Строение целлюлозы. Введение. Что производят из ценного материала

Ставшие привычными для нас обыденные предметы, которые повсеместно встречаются в нашей повседневной жизни, невозможно было бы представить без использования продуктов органической химии. Задолго до Ансельма Пайя, в результате которых он смог обнаружит и описать в 1838 году полисахарид, получивший "целлюлоза" (производная французского cellulose и латинского cellula, что означает «клетка, клетушка»), свойство этого вещества активно использовалось в производстве самых незаменимых вещей.

Расширение знаний о целлюлозе привело к появлению самых разнообразных вещей, изготовленных на её основе. Бумага различных сортов, картон, детали из пластмассы и из искусственных вискозных, медно-аммиачных), полимерные плёнки, эмали и лаки, моющие средства, пищевые добавки (E460) и даже бездымный порох являются продуктами производства и переработки целлюлозы.

В чистом виде целлюлоза представляет собой белое твердое вещество с довольно привлекательными свойствами, проявляет высокую устойчивость к различным химическим и физическим воздействиям.

Природа избрала целлюлозу (клетчатку) своим главным строительным материалом. В растительном мире она составляет основу для деревьев и прочих высших растений. В самом чистом виде в природе целлюлоза находится в волосках семян хлопчатника.

Уникальные свойства этого вещества определяются его оригинальным строением. Формула целлюлозы имеет общую запись (C6 H10 O5)n из чего мы видим ярко выраженное полимерное строение. Повторяющийся огромное количество раз остаток β-глюкозы, имеющий более развернутый вид как -[С6 Н7 О2 (OH)3]-, соединяется в длинную линейную молекулу.

Молекулярная формула целлюлозы определяет её уникальные химические свойства противостоять воздействию агрессивных сред. Также целлюлоза обладает высокой стойкостью к нагреванию, даже при 200 градусах по Цельсию вещество сохраняет свою структуру и не разрушается. Самовоспламенение происходит при температуре в 420°С.

Не менее привлекательна целлюлоза своими физическими свойствами. целлюлозы в виде длинных нитей, содержащих от 300 до 10 000 глюкозных остатков, не имеющих боковых ответвлений, во многом определяет высокую устойчивость этого вещества. Формула глюкозы показывает, как множество предают целлюлозным волокнам не только большую механическую прочность, но и высокую эластичность. Результатом аналитической обработки множества химических опытов и исследований стало создание модели макромолекулы целлюлозы. Она представляет собой жесткую спираль с шагом в 2-3 элементарных звена, которая стабилизирована за счёт внутримолекулярных водородных связей.

Не формула целлюлозы, а степень её полимеризации является основной характеристикой для многих веществ. Так в необработанном хлопке число глюкозидных остатков достигает 2500-3000, в очищенном хлопке - от 900 до 1000, очищенная древесная масса обладает показателем 800-1000, в регенеративной целлюлозе их количество сокращается до 200-400, а в промышленном ацетате целлюлозы он составляет от 150 до 270 «звеньев» в молекуле.

Продуктом для получения целлюлозы служит главным образом это древесина. Основной технологический процесс производства предполагает варку щепы с различными химическими реагентами с последующей очисткой, сушкой и резкой готового продукта.

Последующая обработка целлюлозы дает возможность получать множество материалов с заданными физическими и химическими свойствами, позволяющими производить самые различные продукты, без которых жизнь современного человека трудно представить. Уникальная формула целлюлозы, скорректированная химической и физической обработкой, стала основой для получения материалов, не имеющих аналогов в природе, что позволило их широко применять в химической промышленности, медицине и других отраслях человеческой деятельности.

Целлюлоза - это полисахарид, построенный из элементарных звеньев ангидро- D -глюкозы и представляющий собой поли-1, 4- β - D -глюкопиранозил- D -глюкопиранозу. Макромолекула целлюлозы наряду с ангидроглюкозными звеньями может содержать остатки других моносахаридов (гексоз и пентоз), а также уроновых кислот (см. рис.). Характер и количество таких остатков определяются условиями биохимического синтеза.

Целлюлоза - главная составная часть клеточных стенок высших растений. Вместе с сопровождающими её веществами она играет роль каркаса, несущего основную механическую нагрузку. Целлюлоза содержится в основном в волосках семян некоторых растений, например, хлопчатника (97-98% целлюлозы), древесины (40-50% в расчёте на сухое вещество), лубяных волокон, внутренних слоёв коры растений (лён и рами - 80-90%, джут - 75% и другие), стеблях однолетних растений (30-40%), например, камыша, кукурузы, злаковых растений, подсолнечника.

Выделение целлюлозы из природных материалов основано на действии реагентов, разрушающих или растворяющих нецеллюлозные компоненты. Характер обработки зависит от состава и структуры растительного материала. Для хлопкового волокна (нецеллюлозные примеси - 2, 0-2, 5% азотсодержащих веществ; около 1% пентозанов и пектиновых веществ; 0, 3-1, 0% жиров и восков; 0, 1-0, 2% минеральных солей) используют сравнительно мягкие методы выделения.

Хлопковый пух подвергают парке (3-6 часов, 3-10 атмосфер) с 1, 5-3% раствором едкого натрия с последующей промывкой и отбелкой различными окислителями - двуокисью хлора, гипохлоритом натрия, перекисью водорода. В раствор переходят некоторые полисахариды с низким молярным весом (пентозаны, частично гексозаны), уроновые кислоты, часть жиров и восков. Содержание α -целлюлозы (фракция, нерастворимая в 17, 5% растворе N аОН при 20° в течении 1 часа) может быть доведено до 99, 8-99, 9%. В результате частичного разрушения морфологической структуры волокна при варке повышается реакционная способность целлюлозы (характеристика, определяющая растворимость эфиров, получаемых при последующей химической переработке целлюлозы, и фильтруемость прядильных растворов этих эфиров).

Для выделения целлюлозы из древесины, содержащей 40-55% целлюлозы, 5-10% других гексозанов, 10-20% пентозанов, 20-30% лигнина, 2-5% смол и ряд других примесей и имеющей сложную морфологическую структуру, применяют более жёсткие условия обработки; чаще всего используют сульфитную или сульфатную варку древесной щепы.

При сульфитной варке древесину обрабатывают раствором, содержащим 3-6% свободного SO 2 и около 2% SO 2 , связанного в виде бисульфита кальция, магния, натрия или аммония. Варка проводится под давлением при 135-150° в течение 4-12 часов; варочные растворы при кислой бисульфитной варке имеют рН от 1, 5 до 2, 5. При сульфитной варке происходит сульфирование лигнина с последующим переходом его в раствор. Одновременно часть гемицеллюлоз гидролизуется, образующиеся олиго- и моносахариды, а также часть смолистых веществ растворяются в варочном щёлоке. При применении выделяемой по этому методу целлюлозы (сульфитной целлюлозы) для химической переработки (главным образом в производстве вискозного волокна) целлюлозу подвергают облагораживанию, основной задачей которого является повышение химической чистоты и однородности целлюлозы (удаление лигнина, гемицеллюлозы, снижение зольности и смолистости, изменение коллоидно-химических и физических свойств). Наиболее распространённые методы облагораживания - обработка отбеленной целлюлозы 4-10% раствором N аОН при 20° (холодное облагораживание) или 1% раствором NaOH при 95-100° (горячее облагораживание). Облагороженная сульфитная целлюлоза для химической переработки имеет следующие показатели: 95-98% α -целлюлозы; 0, 15--0, 25% лигнина; 1, 8-4, 0% пентозанов; 0, 07-0, 14% смолы; 0, 06-0, 13% золы. Сульфитную целлюлозу применяют также для изготовления высококачественной бумаги и картона.

Древесную щепу можно также подвергать варке с 4- 6% раствором N аОН (натронная варка) или его смесью с сернистым натрием (сульфатная варка) при 170-175° под давлением течение 5-6 часов. При этом происходит растворение лигнина, переход в раствор и гидролиз части гемицеллюлоз (главным образом гексозанов) и дальнейшие превращения образующихся сахаров в органические оксикислоты (молочную, сахариновую и другие) и кислоты (муравьиную). Смоляные и высшие жирные кислоты постепенно переходят в варочный щёлок в виде натриевых солей (так называемое « сульфатное мыло »). Щелочная варка применима для переработки как еловой, так и сосновой и лиственной древесины. При применении выделяемой по этому методу целлюлозы (сульфатной целлюлозы) для химической переработки древесину перед варкой подвергают предгидролизу (обработке разбавленной серной кислотой при повышенной температуре). Предгидролизная сульфатная целлюлоза, используемая для химической переработки, после облагораживания и отбелки имеет следующий средний состав (%): α -целлюлоза - 94, 5-96, 9; пентозаны 2-2, 5; смолы и жиры - 0, 01-0, 06; зола - 0, 02-0, 06. Сульфатную целлюлозу применяют также для выработки мешочных и обёрточных бумаг, бумажных верёвок, технических бумаг (шпульные, наждачные, конденсаторные), писчих, типографских и белёных прочных бумаг (чертёжные, картографические, для документов).

Сульфатная варка применяется для получения целлюлозы высокого выхода, используемой для выработки гофрированного картона и мешочной бумаги (выход целлюлозы из древесины составляет в этом случае 50-60% против ~ 35% для предгидролизной сульфатной целлюлозы для химической переработки). Целлюлоза высокого выхода содержит значительные количества лигнина (12-18%) и сохраняет форму щепы. Поэтому после варки её подвергают механическому размолу. Натронная и сульфатная варка может быть использована и при выделении целлюлозы из соломы, содержащей большие количества SiO 2 , удаляемой при действии щёлочи.

Из лиственной древесины и однолетних растений целлюлозу выделяют также гидротропной варкой - обработкой сырья концентрированными (40-50%) растворами солей щелочных металлов и ароматических карбоновых и сульфокислот (например, бензойной, цимол- и ксилолсульфокислот) при 150-180° в течение 5-10 часов. Другие методы выделения целлюлозы (азотнокислотный, хлорно-щелочной и другие) не получили широкого распространения.

Для определения молярного веса целлюлозы обычно применяют вискозиметрический [по вязкости растворов целлюлозы в медно-аммиачном растворе, в растворах четвертичных аммониевых оснований, гидроокиси кадмийэтилендиамина (так называемый кадоксен), в щелочном растворе железовиннокислого натриевого комплекса и других, или по вязкости эфиров целлюлозы - главным образом ацетатов и нитратов, полученных в условиях, исключающих деструкцию] и осмотический (для эфиров целлюлозы) методы. Степень полимеризации, определённая с помощью этих методов, различна для разных препаратов целлюлозы: 10-12 тысяч для хлопковой целлюлозы и целлюлозы лубяных волокон; 2, 5-3 тысячи для древесной целлюлозы (по данным определения в ультрацентрифуге) и 0, 3-0, 5 тысячи для целлюлозы вискозного шёлка.

Для целлюлозы характерна значительная полидисперсность по молярному весу. Фракционируют целлюлозу фракционным растворением или осаждением из медно-аммиачного раствора, из раствора в куприэтилендиамине, кадмийэтилендиамине или в щелочном растворе железовиннокислого натриевого комплекса, а также фракционным осаждением из растворов нитратов целлюлозы в ацетоне или этилацетате. Для целлюлозы хлопка, лубяных волокон и древесной целлюлозы хвойных пород характерны кривые распределения по молярному весу с двумя максимумами; кривые для древесной целлюлозы лиственных пород имеют один максимум.

Целлюлоза имеет сложную надмолекулярную структуру. На основании данных рентгенографических, электронографических и спектроскопических исследований обычно принимают, что целлюлоза относится к кристаллическим полимерам. Целлюлоза имеет ряд структурных модификаций, основные из которых природная целлюлоза и гидратцеллюлоза. Природная целлюлоза превращается в гидратцеллюлозу при растворении и последующем высаживании из раствора, при действии концентрированных растворов щёлочи и последующем разложении щелочной целлюлозы и другими. Обратный переход может быть осуществлён при нагревании гидратцеллюлозы в растворителе, вызывающем её интенсивное набухание (глицерин, вода). Обе структурные модификации имеют различные рентгенограммы и сильно отличаются по реакционной способности, растворимости (не только самой целлюлозы, но и её эфиров), адсорбционной способности и другими. Препараты гидратцеллюлозы обладают повышенной гигроскопичностью и накрашиваемостыо, а также более высокой скоростью гидролиза.

Наличие между элементарными звеньями в макромолекуле целлюлозы ацетальных (глюкозидных) связей обусловливает малую устойчивость её к действию кислот, в присутствии которых протекает гидролиз целлюлозы (см. рис.). Скорость процесса зависит от ряда факторов, из которых решающим, особенно при проведении реакции в гетерогенной среде, является структура препаратов, определяющая интенсивность межмолекулярного взаимодействия. В начальной стадии гидролиза скорость может быть более высокой, что связано с возможностью существования в макромолекуле небольшого числа связей, менее устойчивых к действию гидролизующих реагентов, чем обычные глюкозидные связи. Продукты частичного гидролиза целлюлозы называются гидроцеллюлозой.

В результате гидролиза значительно изменяются свойства целлюлозного материала - снижается механическая прочность волокон (из-за уменьшения степени полимеризации), увеличивается содержание альдегидных групп и растворимость в щелочах. Частичный гидролиз не изменяет устойчивости препарата целлюлозы к щелочным обработкам. Продуктом полного гидролиза целлюлозы является глюкоза. Промышленные методы гидролиза целлюлозосодержащего растительного сырья заключаются в обработке разбавленными растворами HCl и H 2 SO 4 (0, 2-0, 3%) при 150-180°; выход сахаров при ступенчатом гидролизе - до 50%.

По химической природе целлюлоза представляет собой полиатомный спирт. Благодаря наличию в элементарном звене макромолекулы гидроксильных групп целлюлоза вступает в реакцию с щелочными металлами и основаниями. При обработке высушенной целлюлозы раствором металлического натрия в жидком аммиаке при минус 25-50° в течение 24 часов образуется тринатрийалкоголят целлюлозы:

n + 3nNa → n + 1, 5nH 2.

При действии на целлюлозу концентрированных растворов щелочей наряду с химической реакцией протекают и физико-химические процессы - набухание целлюлозы и частичное растворение её низкомолекулярных фракций, структурные превращения. Взаимодействие гидроокиси щелочного металла с целлюлозой может протекать по двум схемам:

n + n NaOH ↔ n + nH 2 O

[ C 6 H 7 O 2 (OH) 3 ]n + n NaOH ↔ n.

Реакционная способность первичных и вторичных гидроксильных групп целлюлозы в щелочной среде различна. Наиболее ярко выражены кислотные свойства у гидроксильных групп, расположенных у второго углеродного атома элементарного звена целлюлозы, входящих в состав гликолевой группировки и находящихся в α -положении к ацетальной связи. Образование алкоголята целлюлозы, по-видимому, происходит как раз за счёт этих гидроксильных групп, в то время как при взаимодействии с остальными ОН-группами образуется молекулярное соединение.

Состав щелочной целлюлозы зависит от условий её получения - концентрации щелочи; температуры, характера целлюлозного материала и других. Вследствие обратимости реакции образования щелочной целлюлозы повышение концентрации щёлочи в растворе приводит к увеличению γ (количество замещённых гидроксильных групп на 100 элементарных звеньев макромолекулы целлюлозы) щелочной целлюлозы, а снижение температуры мерсеризации - к увеличению γ щелочной целлюлозы, получаемой при действии эквиконцентрированных растворов щёлочи, что объясняется различием в температурных коэффициентах прямой и обратной реакций. Различная интенсивность взаимодействия с щелочами разных целлюлозных материалов связана, по-видимому, с особенностями физической структуры этих материалов.

Важной составной частью процесса взаимодействия целлюлозы с щелочами является набухание целлюлозы и растворение её низкомолекулярных фракций. Эти процессы облегчают удаление из целлюлозы низкомолекулярных фракций (гемицеллюлоз) и диффузию этерифицирующих реагентов внутрь волокна при последующих процессах этерификации (например, при ксантогенировании). При понижении температуры степень набухания значительно увеличивается. Например, при 18° увеличение диаметра хлопкового волокна при действии 12% NaOH составляет 10%, а при -10° достигает 66%. При увеличении концентрации щёлочи происходит сначала увеличение, а затем (свыше 12%) снижение степени набухания. Максимальная степень набухания наблюдается при тех концентрациях щёлочи, при которых происходит появление рентгенограммы щелочной целлюлозы. Эти концентрации различны для разных целлюлозных материалов: для хлопка 18% (при 25°), для рами 14-15%, для сульфитной целлюлозы 9, 5-10%. Взаимодействие целлюлозы с концентрированными растворами N аОН широко используют в текстильной промышленности, при производстве искусственных волокон и простых эфиров целлюлозы.

Взаимодействие целлюлозы с другими гидроокисями щелочных металлов протекает аналогично реакции с едким натром. Рентгенограмма щелочной целлюлозы появляется при действии на препараты природной целлюлозы примерно эквимолярных (3, 5-4, 0 моль/л) растворов гидроокисей щелочных металлов. Сильные органические основания - некоторые гидроокиси тетраалкил (арил) аммония, по-видимому, образуют с целлюлозой молекулярные соединения.

Особое место в ряду реакций целлюлозы с основаниями занимает её взаимодействие с куприаммингидратом [ Cu (NH 3 ) 4 ] (OH ) 2 , а также с рядом других комплексных соединений меди, никеля, кадмия, цинка - куприэтилендиамином [ Cu (en ) 2 ](ОН) 2 (en - молекула этилендиамина), ниоксаном [ Ni(NH 3 ) 6 ] (ОН) 2 , ниоксеном [ Ni (en ) 3 ] (ОН) 2 , кадоксеном [ Cd (en ) 3 ] (OH ) 2 и другими. В этих продуктах целлюлоза растворяется. Осаждение целлюлозы из медно-аммиачного раствора осуществляется при действии воды, растворов щёлочи или кислоты.

При действии окислителей происходит частичное окисление целлюлозы - процесс, успешно используемый в технологии (отбелка целлюлозы и хлопчатобумажных тканей, предсозревание щелочной целлюлозы). Окисление целлюлозы - побочный процесс при облагораживании целлюлозы, приготовлении медно-аммиачного прядильного раствора, эксплуатации изделий из целлюлозных материалов. Продукты частичного окисления целлюлозы носят название оксицеллюлоз. В зависимости от характера окислителя окисление целлюлозы может носить избирательный или неизбирательный характер. К наиболее избирательно действующим окислителям относится йодная кислота и её соли, окисляющие гликолевую группировку элементарного звена целлюлозы с разрывом пиранового цикла (образование диальдегидцеллюлозы) (см. рис.). При действии йодной кислоты и периодатов окисляется также незначительное число первичных гидроксильных групп (до карбоксильных или альдегидных). По аналогичной схеме окисляется целлюлоза при действии тетраацетата свинца в среде органических растворителей (уксусная кислота, хлороформ).

По устойчивости к действию кислот диальдегидцеллюлоза мало отличается от исходной целлюлозы, но значительно менее устойчива к действию щелочей и даже воды, что является результатом гидролиза полуацетальной связи в щелочной среде. Окисление альдегидных групп в карбоксильные действием хлорита натрия (образование дикарбоксилцеллюлозы), а также восстановление их до гидроксильных (образование так называемой « диспирт »- целлюлозы) стабилизируют окисленную целлюлозу к действию щелочных реагентов. Растворимость нитратов и ацетатов диальдегидцеллюлозы даже невысокой степени окисления (γ = 6-10) значительно ниже, чем растворимость соответствующих эфиров целлюлозы, по-видимому, вследствие образования при этерификации межмолекулярных полуацетальных связей. При действии на целлюлозу двуокиси азота окисляются преимущественно первичные гидроксильные группы до карбоксильных (образование монокарбоксилцеллюлозы) (см. рис.). Реакция протекает по радикальному механизму с промежуточным образованием азотистокислых эфиров целлюлозы и последующими окислительными превращениями этих эфиров. До 15% от общего содержания карбоксильных групп являются неуроновыми (образуются СООН-группы у второго и третьего углеродных атомов). Одновременно происходит окисление гидроксильных групп у этих атомов до кетогрупп (до 15-20% от общего количества окисленных гидроксильных групп). Образование кетогрупп является, по-видимому, причиной крайне низкой устойчивости монокарбоксилцеллюлозы к действию щелочей и даже воды при повышенной температуре.

При содержании 10-13% СООН-групп монокарбоксилцеллюлоза растворяется в разбавленном растворе NaOH, растворах аммиака, пиридина с образованием соответствующих солей. Её ацетилирование протекает медленнее, чем целлюлозы; ацетаты не полностью растворяются в метиленхлориде. Нитраты монокарбоксилцеллюлозы не растворяются в ацетоне даже при содержании азота до 13, 5%. Эти особенности свойств сложных эфиров монокарбоксилцеллюлозы связаны с образованием межмолекулярных эфирных связей при взаимодействии карбоксильных и гидроксильных групп. Монокарбоксилцеллюлоза применяется как кровоостанавливающее средство, как катионит для разделения биологически активных веществ (гормоны). Путём комбинированного окисления целлюлозы периодатом, а затем хлоритом и двуокисью азота синтезированы препараты так называемой трикарбоксилцеллюлозы, содержащие до 50, 8% СООН-групп.

Направление окисления целлюлозы при действии на неё неизбирательных окислителей (двуокись хлора, соли хлорноватистой кислоты, перекись водорода, кислород в щелочной среде) в значительной степени зависит от характера среды. В кислой и нейтральной средах при действии гипохлорита и перекиси водорода происходит образование продуктов восстановительного типа, по-видимому, в результате окисления первичных гидроксильных групп до альдегидных и одной из вторичных ОН-групп - до кетогруппы (перекись водорода окисляет также гликолевые группировки с разрывом пиранового цикла). При окислении гипохлоритом в щелочной среде альдегидные группы постепенно превращаются в карбоксильные, вследствие чего продукт окисления имеет кислотный характер. Обработка гипохлоритом - один из наиболее часто применяемых методов отбелки целлюлозы. Для получения высококачественной целлюлозы высокой степени белизны её отбеливают двуокисью хлора или хлоритом в кислой или щелочной среде. При этом происходит окисление лигнина, разрушение красящих веществ, а также окисление альдегидных групп в макромолекуле целлюлозы до карбоксильных; гидроксильные группы не окисляются. Окисление кислородом воздуха в щелочной среде, протекающее по радикальному механизму и сопровождающееся значительной деструкцией целлюлозы, приводит к накоплению в макромолекуле карбонильных и карбоксильных групп (предсозревание щелочной целлюлозы).

Наличие в элементарном звене макромолекулы целлюлозы гидроксильных групп позволяет осуществить переход к таким важным классам производных целлюлозы как простые и сложные эфиры. Эти соединения благодаря ценным свойствам используют в различных отраслях техники - при получении волокон и плёнок (ацетаты, нитраты целлюлозы), пластмасс (ацетаты, нитраты, этиловые, бензиловые эфиры), лаков и электроизоляционных покрытий, в качестве стабилизаторов суспензий и загустителей в нефтяной и текстильной промышленности (низкозамещённая карбоксиметилцеллюлоза).

Волокна на основе целлюлозы (природные и искусственные) - полноценный текстильный материал, обладающий комплексом ценных свойств (высокие прочность и гигроскопичность, хорошая накрашиваемость. Недостатки целлюлозных волокон - горючесть, недостаточно высокая эластичность, лёгкое разрушение под действием микроорганизмов и т. д. Тенденция к направленному изменению (модификации) целлюлозных материалов вызвала появление ряда новых производных целлюлозы, а в некоторых случаях и новых классов производных целлюлозы.

Модификацию свойств и синтез новых производных целлюлозы осуществляют с использованием двух групп методов:

1) этерификацией, О-алкилированием или превращением гидроксильных групп элементарного звена в другие функциональные группы (окисление, нуклеофильное замещение с использованием в качестве исходных веществ некоторых эфиров целлюлозы - нитратов, эфиров с n -толуол- и метансульфокислотой);

2) привитой сополимеризацией или взаимодействием целлюлозы с полифункциональными соединениями (превращение целлюлозы соответственно в разветвлённый или сшитый полимер).

Одним из наиболее общих методов синтеза различных производных целлюлозы является нуклеофильное замещение. Исходными веществами в этом случае служат эфиры целлюлозы с некоторыми сильными кислотами (толуол– и метансульфокислитой, азотной и фенилфосфорной кислотами), а также галогенодезоксипроизводные целлюлозы. С помощью реакции нуклеофильного замещения синтезированы производные целлюлозы, в которых гидроксильные группы заменены галогенами (хлор, фтор, йод), родановой, нитрильной и другими группами; синтезированы препараты дезоксицеллюлозы, содержащие гетероциклы (пиридин и пиперидин), получены эфиры целлюлозы с фенолами и нафтолами, ряд сложных эфиров целлюлозы (с высшими карбоновыми кислотами, α - аминокислотами , непредельными кислотами). Внутримолекулярная реакция нуклеофильного замещения (омыление тозиловых эфиров целлюлозы) приводит к образованию смешанных полисахаридов, содержащих 2, 3– и 3, 6-ангидроциклы.

Наибольшее практическое значение для создания целлюлозных материалов, обладающих новыми технически ценными свойствами, имеет синтез привитых сополимеров целлюлозы. К наиболее распространённым методам синтеза привитых сополимеров целлюлозы относятся использование реакции передачи цепи на целлюлозу, радиационно-химическая сополимеризация и использование окислительно-восстановительных систем, в которых целлюлоза играет роль восстановителя. В последнем случае образование макрорадикала может идти за счёт окисления как гидроксильных групп целлюлозы (окисление солями церия), так и специально введённых в макромолекулу функциональных групп - альдегидных, аминогрупп (окисление солями ванадия, марганца), или разложения диазосоединения, образующегося при диазотировании введённых в целлюлозу ароматических аминогрупп. Синтез привитых сополимеров целлюлозы в ряде случаев может быть проведён без образования гомополимера, что уменьшает расход мономера. Привитые сополимеры целлюлозы, получаемые в обычных условиях сополимеризации, состоят из смеси исходной целлюлозы (или её эфира, на который осуществляется прививка) и привитого сополимера (40-60%). Степень полимеризации привитых цепей колеблется в зависимости от метода инициирования и характера прививаемого компонента от 300 до 28 000.

Изменение свойств в результате привитой сополимеризации определяется характером прививаемого мономера. Прививка стирола, акриламида, акрилонитрила приводит к увеличению прочности хлопкового волокна в сухом состоянии. Прививка полистирола, полиметилметакрилата и полибутилакрилата позволяет получить гидрофобные материалы. Привитые сополимеры целлюлозы с гибкоцепными полимерами (полиметилакрилат) при достаточно большом содержании привитого компонента являются термопластичными. Привитые сополимеры целлюлозы с полиэлектролитами (полиакриловая кислота, полиметилвинилпиридин) можно использовать в качестве ионообменных тканей, волокон, плёнок.

Одним из недостатков волокон из целлюлозы является невысокая эластичность и, как следствие, плохое сохранение формы изделий и повышенная сминаемость. Устранение этого недостатка достигается путём образования межмолекулярных связей при обработке тканей полифункциональными соединениями (диметилолмочевина, диметилолциклоэтиленмочевина, триметилолмеламин, диметилолтриазон, различные диэпоксиды, ацетали), реагирующими с ОН-группами целлюлозы. Наряду с образованием химических связей между макромолекулами целлюлозы происходит полимеризация сшивающего реагента с образованием линейных и пространственных полимеров. Ткани из целлюлозных волокон пропитывают раствором, содержащим сшивающий реагент и катализатор, отжимают, сушат при невысокой температуре и подвергают термообработке при 120-160° в течение 3-5 минут. При обработке целлюлозы полифункциональными сшивающими реагентами процесс протекает главным образом в аморфных участках волокна. Для достижения одинакового эффекта несминаемости расход сшивающего реагента при обработке вискозных волокон должен быть значительно выше, чем при обработке хлопкового волокна, что связано, по-видимому, с более высокой степенью кристалличности последнего.

Целлюлоза (франц. cellulose, от лат. cellula, буквально - комнатка, клетушка, здесь - клетка)

клетчатка, один из самых распространённых природных полимеров (полисахарид (См. Полисахариды)); главная составная часть клеточных стенок растений, обусловливающая механическую прочность и эластичность растительных тканей. Так, содержание Ц. в волосках семян хлопчатника 97-98%, в стеблях лубяных растений (лён, рами, джут) 75-90%, в древесине 40-50%, камыше, злаках, подсолнечнике 30-40%. Обнаружена также в организме некоторых низших беспозвоночных.

В организме Ц. служит главным образом строительным материалом и в обмене веществ почти не участвует. Ц. не расщепляется обычными ферментами желудочно-кишечного тракта млекопитающих (амилазой, мальтазой); при действии фермента целлюлазы, выделяемого микрофлорой кишечника травоядных животных, Ц. распадается до D-глюкозы. Биосинтез Ц. протекает с участием активированной формы D-глюкозы.

Структура и свойства целлюлозы. Ц. - волокнистый материал белого цвета, плотность 1,52-1,54 г/см 3 (20 °С). Ц. растворима в т. н. медно-аммиачном растворе [раствор амминкупрум (II)-гидроксида в 25%-ном водном растворе аммиака], водных растворах четвертичных аммониевых оснований, водных растворах комплексных соединений гидроокисей поливалентных металлов (Ni, Со) с аммиаком или этилендиамином, щелочном растворе комплекса железа (III) с виннокислым натрием, растворах двуокиси азота в диметилформамиде, концентрированной фосфорной и серной кислотах (растворение в кислотах сопровождается деструкцией Ц.).

Макромолекулы Ц. построены из элементарных звеньев D-глюкозы (См. Глюкоза), соединённых 1,4-β-гликозидными связями в линейные неразветвлённые цепи:

Ц. обычно относят к кристаллическим полимерам. Для неё характерно явление полиморфизма, т. е. наличие ряда структурных (кристаллических) модификаций, различающихся параметрами кристаллической решётки и некоторыми физическими и химическими свойствами; основными модификациями являются Ц. I (природная Ц.) и Ц. II (Гидратцеллюлоза).

Ц. имеет сложную надмолекулярную структуру. Первичный элемент её - микрофибрилла, состоящая из нескольких сотен макромолекул и имеющая форму спирали (толщина 35-100 Å, длина 500-600 Å и выше). Микрофибриллы объединяются в более крупные образования (300-1500 Å), по-разному ориентированные в различных слоях клеточной стенки. Фибриллы «цементируются» т. н. матриксом, состоящим из др. полимерных материалов углеводной природы (гемицеллюлозы, пектина) и белка (экстенсина).

Гликозидные связи между элементарными звеньями макромолекулы Ц. легко гидролизуются под действием кислот, что является причиной деструкции Ц. в водной среде в присутствии кислых катализаторов. Продукт полного гидролиза Ц. - глюкоза; эта реакция лежит в основе промышленного способа получения этилового спирта из целлюлозосодержащего сырья (см. Гидролиз растительных материалов). Частичный гидролиз Ц. протекает, например, при выделении её из растительных материалов и при химической переработке. Неполным гидролизом Ц., осуществляемым таким образом, чтобы деструкция происходила только в малоупорядоченных участках структуры, получают т. н. микрокристаллическую «порошковую» Ц. - белоснежный легкосыпучий порошок.

В отсутствие кислорода Ц. устойчива до 120-150 °С; при дальнейшем повышении температуры природные целлюлозные волокна подвергаются деструкции, гидратцеллюлозные - дегидратации. Выше 300 °С происходит графитизация (карбонизация) волокна - процесс, используемый при получении углеродных волокон (См. Углеродные волокна).

Вследствие наличия в элементарных звеньях макромолекулы гидроксильных групп Ц. легко этерифицируется и алкилируется; эти реакции широко используются в промышленности для получения простых и сложных эфиров Ц. (см. Целлюлозы эфиры). Ц. реагирует с основаниями; взаимодействие с концентрированными растворами едкого натра, приводящее к образованию щелочной Ц. (Мерсеризация Ц.), - промежуточная стадия при получении эфиров Ц. Большинство окислителей вызывает неизбирательное окисление гидроксильных групп Ц. до альдегидных, кето- или карбоксильных групп, и только некоторые из окислителей (например, йодная кислота и её соли) - избирательное (т. е. окисляют ОН-группы у определённых атомов углерода). Окислительной деструкции Ц. подвергают при получении вискозы (См. Вискоза) (стадия предсозревания щелочной Ц.); окисление происходит также при отбелке Ц.

Применение целлюлозы. Из Ц. производят бумагу (См. Бумага), картон, разнообразные искусственные волокна - гидратцеллюлозные (Вискозные волокна , медноаммиачное волокно (См. Медноаммиачные волокна)) и эфироцеллюлозные (ацетатное и триацетатное - см. Ацетатные волокна), плёнки (целлофан), пластмассы и лаки (см. Этролы , Гидратцеллюлозные плёнки , Эфироцеллюлозные лаки). Природные волокна из Ц. (хлопковое, лубяные), а также искусственные широко используются в текстильной промышленности. Производные Ц. (главным образом эфиры) применяют как загустители печатных красок, шлихтующие и аппретирующие препараты, стабилизаторы суспензий при изготовлении бездымного пороха и др. Микрокристаллическую Ц. используют в качестве наполнителя при изготовлении лекарственных препаратов, как сорбент в аналитической и препаративной хроматографии.

Лит.: Никитин Н. И., Химия древесины и целлюлозы, М. - Л., 1962; Краткая химическая энциклопедия, т. 5, М., 1967, с. 788-95; Роговин З. А., Химия целлюлозы, М., 1972; Целлюлоза и ее производные, пер. с англ., т. 1-2, М., 1974; Кретович В. Л., Основы биохимии растений, 5 изд., М., 1971.

Л. С. Гальбрайх, Н. Д. Габриэлян.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Целлюлоза" в других словарях:

    Целлюлоза … Википедия

    1) иначе клетчатка; 2) сорт пергаменной бумаги из смеси древесины, глины и хлопка. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. ЦЕЛЛЮЛОЗА 1) клетчатка; 2) бумага, приготовляемая из древесины с примесью … Словарь иностранных слов русского языка

    Госсипин, целлулоза, клетчатка Словарь русских синонимов. целлюлоза сущ., кол во синонимов: 12 алкалицеллюлоза (1) … Словарь синонимов

    - (С6Н10О5), углевод из группы ПОЛИСАХАРИДОВ, являющийся струк турным компонентом клеточных стенок растений и водорослей. Он состоит из параллельных неразветвленных цепей глюкозы, соединенных крест накрест между собой в устойчивую структуру.… … Научно-технический энциклопедический словарь

    Клетчатка, основной опорный полисахарид клеточных стенок растений и нек рых беспозвоночных (асцидии); один из самых распространённых природных полимеров. Из 30 млрд. т углерода, к рые высшие растения ежегодно превращают в органич. соединения, ок … Биологический энциклопедический словарь

    целлюлоза - ы, ж. cellulose f., нем. Zellulose <лат. cellula клетка.1. То же, что клетчатка. БАС 1. 2. Вещество, получаемое из химически обработанной древесины и стеблей некоторых растений; служит для производства бумаги, искусственного шелка, а также… … Исторический словарь галлицизмов русского языка

    - (франц. cellulose от лат. cellula, букв. комнатка, здесь клетка) (клетчатка), полисахарид, образованный остатками глюкозы; главная составная часть клеточных стенок растений, обусловливающая механическую прочность и эластичность растительных… … Большой Энциклопедический словарь

    - (или целлулоза), целлюлозы, мн. нет, жен. (от лат. cellula клетка). 1. То же, что клетчатка в 1 знач. (бот.). 2. Вещество, получаемое из химически обработанной древесины и стеблей некоторых растений и идущее на изготовление бумаги, искусственного … Толковый словарь Ушакова

    ЦЕЛЛЮЛОЗА, ы, жен. То же, что клетчатка (в 1 знач.). | прил. целлюлозный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Целлюлоза. См. клетчатка. (

Нахождение в природе. Физические свойства.

  • 1. Целлюлоза, или клетчатка, входит в состав растений, образуя в них оболочки клеток.
  • 2. Отсюда происходит и ее название (от лат. «целлула» - клетка).
  • 3. Целлюлоза придает растениям необходимую прочность и эластичность и является как бы их скелетом.
  • 4. Волокна хлопка содержат до 98 % целлюлозы.
  • 5. Волокна льна и конопли также в основном состоят из целлюлозы; в древесине она составляет около 50 %.
  • 6. Бумага, хлопчатобумажные ткани - это изделия из целлюлозы.
  • 7. Особенно чистыми образцами целлюлозы являются вата, полученная из очищенного хлопка, и фильтровальная (непроклеенная) бумага.
  • 8. Выделенная из природных материалов целлюлоза представляет собой твердое волокнистое вещество, не растворяющееся ни в воде, ни в обычных органических растворителях.

Строение целлюлозы:

  • 1) целлюлоза, как и крахмал, является природным полимером;
  • 2) эти вещества имеют даже одинаковые по составу структурные звенья - остатки молекул глюкозы, одну и ту же молекулярную формулу (С 6 H 10 O 5) n ;
  • 3) значение n у целлюлозы обычно выше, чем у крахмала: средняя молекулярная масса ее достигает нескольких миллионов;
  • 4) основное различие между крахмалом и целлюлозой - в структуре их молекул.

Нахождение целлюлозы в природе.

  • 1. В природных волоконцах макромолекулы целлюлозы располагаются в одном направлении: они ориентированы вдоль оси волокна.
  • 2. Возникающие при этом многочисленные водородные связи между гидроксильными группами макромолекул обусловливают высокую прочность этих волокон.
  • 3. В процессе прядения хлопка, льна и т. д. эти элементарные волокна сплетаются в более длинные нити.
  • 4. Это объясняется тем, что макромолекулы в ней хотя и имеют линейную структуру, но расположены более беспорядочно, не ориентированы в одном направлении.

Построение макромолекул крахмала и целлюлозы из разных циклических форм глюкозы существенно сказывается на их свойствах:

  • 1) крахмал является важным продуктом питания человека, целлюлоза для этой цели использоваться не может;
  • 2) причина состоит в том, что ферменты, способствующие гидролизу крахмала, не действуют на связи между остатками целлюлозы.

Химические свойства целлюлозы.

  • 1. Из повседневной жизни известно, что целлюлоза хорошо горит.
  • 2. При нагревании древесины без доступа воздуха происходит термическое разложение целлюлозы. При этом образуются летучие органические вещества, вода и древесный уголь.
  • 3. В числе органических продуктов разложения древесины - метиловый спирт, уксусная кислота, ацетон.
  • 4. Макромолекулы целлюлозы состоят из звеньев, аналогичных тем, которые образуют крахмал, она подвергается гидролизу, и продуктом ее гидролиза, как и у крахмала, будет глюкоза.
  • 5. Если растереть в фарфоровой ступке кусочки фильтровальной бумаги (целлюлозы), смоченной концентрированной серной кислотой, и разбавить полученную кашицу водой, а также нейтрализовать кислоту щелочью и, как в случае с крахмалом, испытать раствор на реакцию с гидроксидом меди (II), то будет видно появление оксида меди (I). То есть в опыте произошел гидролиз целлюлозы. Процесс гидролиза, как и у крахмала, идет ступенчато, пока не образуется глюкоза.
  • 6. Суммарно гидролиз целлюлозы может быть выражен тем же уравнением, что и гидролиз крахмала: (С 6 H 10 O 5) n + nН 2 О = nС 6 H 12 O 6 .
  • 7. Структурные звенья целлюлозы (С 6 H 10 O 5) n содержат гидроксильные группы.
  • 8. За счет этих групп целлюлоза может давать простые и сложные эфиры.
  • 9. Большое значение имеют азотно-кислые эфиры целлюлозы.

Особенности азотно-кислых эфиров целлюлозы.

  • 1. Они получаются при действии на целлюлозу азотной кислотой в присутствии серной кислоты.
  • 2. В зависимости от концентрации азотной кислоты и от других условий в реакцию этерификации вступают одна, две или все три гидроксильные группы каждого звена молекулы целлюлозы, например:

N + 3nHNO 3 > n + 3n H 2 O.

Общее свойство нитратов целлюлозы - их чрезвычайная горючесть.

Тринитрат целлюлозы, называемый пироксилином, - сильновзрывчатое вещество. Он применяется для производства бездымного пороха.

Очень важными являются также уксусно-кислые эфиры целлюлозы - диацетат и триацетат целлюлозы. Диацетат и триацетат целлюлозы по внешнему виду сходны с целлюлозой.

Применение целлюлозы.

  • 1. Благодаря своей механической прочности в составе древесины используется в строительстве.
  • 2. Из нее изготавливают разного рода столярные изделия.
  • 3. В виде волокнистых материалов (хлопка, льна) используется для изготовления нитей, тканей, канатов.
  • 4. Выделенная из древесины (освобожденная от сопутствующих веществ) целлюлоза идет на изготовление бумаги.
  • 27. Липиды. Классификация

Жиры в природе, их физические свойства.

  • 1. Наряду с углеводами и белками жиры входят в состав всех растительных и животных организмов и составляют одну из основных частей пищи.
  • 2. Животные жиры, как правило, твердые вещества.
  • 3. Растительные жиры чаще бывают жидкими и называются еще маслами.
  • 4. Известны также жидкие жиры животного происхождения (например, рыбий жир) и твердые растительные масла (например, кокосовое масло).
  • 5. Все жиры легче воды.
  • 6. В воде они не растворимы, но хорошо растворяются во многих органических растворителях (дихлорэтане, бензине).

Особенности строения жиров.

Строение жиров было установлено М. Шеврелем и М. Бертло. Нагревая жиры с водой (в присутствии щелочи), М. Шеврель еще в начале XIX в. установил, что, присоединяя воду, они разлагаются на глицерин и карбоновые кислоты - стеариновую, олеиновую и др. М. Бертло (1854 г.) осуществил обратную реакцию. Он нагревал смесь глицерина с кислотами и получил при этом вещества, аналогичные жирам; М. Шеврель провел реакцию гидролиза сложного эфира, а М. Бертло осуществил реакцию этерификации, т. е. синтез сложного эфира. На основании этих данных легко прийти к выводу о строении жиров.

Характерные особенности жиров.

  • 1. Жиры - это сложные эфиры трехатомного спирта глицерина и карбоновых кислот.
  • 2. В большинстве случаев жиры образованы высшими предельными и непредельными карбоновыми кислотами, главным образом:
    • а) пальмитиновой C 15 H 31 -СООН;
    • б) стеариновой С 17 Н 35 -СООН;
    • в) олеиновой С 17 Н 33 -СООН;
    • г) линолевой С 17 Н 31 -СООН и некоторыми другими.
  • 3. В меньшей степени в образовании жиров участвуют низшие кислоты, например, масляная кислота С 3 Н 7 -СООН (в сливочном масле), капроновая кислота С 5 Н 11 -СООН и др.
  • 4. Жиры, которые образуются преимущественно предельными кислотами, твердые (говяжий жир, бараний жир).
  • 5. С повышением содержания непредельных кислот температура плавления жиров понижается, они становятся более легкоплавкими (свиное сало, сливочное масло).

Химические свойства жиров определяются принадлежностью их к классу сложных эфиров. Поэтому наиболее характерная для них реакция - гидролиз.

Жиры как питательные вещества.

1. Жиры являются важной составной частью нашей пищи.

При их окислении в организме выделяется в два раза больше теплоты, чем при окислении таких же количеств белков и углеводов.

  • 2. Как вещества, не растворимые в воде, жиры не могут непосредственно всасываться в организм из органов пищеварения.
  • 28. Ацилглицерины. Строение, химические свойства

Ацилглицерины

Наиболее важная и распространенная группа простых нейтральных липидов -- ацилглицерины. Ацилглицерины (или глицериды) -- это сложные эфиры глицерина и высших карбоновых кислот (табл. 1). Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров входят, главным образом, триацилглицерины (I), а также диацилглицерины (II) и моноацилглицерины (III) (рис.1).

Рисунок 1 - триацилглицерины (I), диацилглицерины (II) и моноацилглицерины (III); R, R", R"" - углеводородные радикалы.

Целлюлоза - что это такое? Данный вопрос волнует всех, кто связан с органической химией. Попробуем выяснить основные характеристики данного соединения, выявить его отличительные особенности, сферы практического применения.

Особенности строения

Химическая целлюлоза имеет формулу (С 6 Н 10 О 5)п. Она является полисахаридом, который включает в себя остатки β-глюкозы. Для целлюлозы характерно линейное строение. Каждый остаток ее молекулы включает в себя три группы ОН, поэтому для данного соединения характерны свойства многоатомных спиртов. Присутствие в молекуле кольцевой альдегидной группы придает целлюлозе восстановительные (редуцирующие) свойства. Именно это органическое соединение является важнейшим природным полимером, основным компонентом растительной ткани.

В большом количестве она содержится во льне, хлопке, иных волокнистых растениях, являющихся основным источником получения целлюлозного волокна.

Техническую целлюлозу выделяют из древесных растений.

Химия древесины

Производство целлюлозы рассматривается в этом отдельном разделе химии. Именно здесь предполагается рассмотрение особенностей состава дерева, его химических и физических свойств, способов анализа и выделения веществ, химической сущности процессов переработки дерева и его отдельных составных частей.

Древесная целлюлоза является полидисперсной, содержащей макромолекулы различной длины. Для выявления степени полидисперсности применяют метод фракционирования. Образец подразделяют на отдельные фракции, затем изучают их характеристики.

Химические свойства

Рассуждая над тем, целлюлоза что такое, необходимо провести детальный анализ химических свойств данного органического соединения.

Техническую целлюлозу можно применять в производстве картона и бумаги, так как он без особых проблем подвергается химической переработке.

Любая технологическая цепочка, касающаяся переработки природной целлюлозы, направлена на сохранение в ней ценных свойств. Современная переработка целлюлозы дает возможность осуществлять процесс растворения этого вещества, изготавливать из целлюлозы абсолютно новые химические вещества.

Какими свойствами обладает целлюлоза? Что такое процесс деструкции? Эти вопросы включены в школьный курс органической химии.

Среди характерных химических свойств целлюлозы можно отметить:

  • деструкцию;
  • сшивание;
  • реакции с участием функциональных групп.

При деструкции наблюдается разрыв в цепи макромолекулы гликозидных связей, сопровождающийся понижением степени полимеризации. В некоторых случаях возможен и полный разрыв молекулы.

Варианты деструкции целлюлозы

Выясним, какие основные виды деструкции имеет целлюлоза, что такое разрыв макромолекул.

В настоящее время в химическом производстве выделяют несколько видов деструкции.

При механическом варианте наблюдается разрыв связей С-С в циклах, а также разрушение гликозидных связей. Подобный процесс происходит при механическом измельчении вещества, к примеру, во время ее размола для изготовления бумаги.

Термическая деструкция происходит под воздействием тепловой энергии. Именно на этом процессе базируется технологический пиролиз древесины.

Фотохимическая деструкция предполагает разрушение макромолекул под воздействием ультрафиолетового облучения.

Для радиационного типа разрушения природного полимера, предполагается присутствие рентгеновского излучения. Такой вид деструкции используют в специальных приборах.

При воздействии кислорода воздуха возможно окислительное разрушение целлюлозы. Процесс характеризуется одновременным окислением спиртовых и альдегидных групп, присутствующих в данном соединении.

Под действием на целлюлозы воды, а также водных растворов кислот и щелочей происходит процесс гидролиза целлюлозы. Реакцию целенаправленно осуществляют в тех случаях, когда необходимо провести качественный анализ структуры вещества, а вот при варке данного вещества он не желателен.

Микроорганизмы, например, грибы, могут проводить биологическое разрушение целлюлозы. Для получения качественного продукта важно предупреждать ее биологическое разрушение при получении бумаги, хлопчатобумажных тканей.

В связи с присутствием в молекулах двух функциональных групп целлюлоза проявляет свойства, характерные для многоатомных спиртов и альдегидов.

Реакции сшивания

Подобные процессы подразумевают возможность получения макромолекул с заданными физическими и химическими свойствами.

Они широко применяются в промышленном производстве целлюлозы, придают ей новые эксплуатационные характеристики.

Получение щелочной целлюлозы

Что собой представляет такая целлюлоза? Отзывы свидетельствуют о том, что именно эта технология считается самой старой и распространенной в мире. В наше время подобным способом облагораживают полимер, получаемый при изготовлении вискозного волокна и пленок, создания простых эфиров целлюлозы.

Лабораторными исследованиями было установлено, что после подобной обработки повышается блеск ткани, увеличивается ее механическая прочность. Щелочная целлюлоза - отличное сырье для изготовления волокон.

Существует три разновидности таких продуктов: физико-химические, структурные, химические. Все они востребованы в современном химическом производстве, применяются при изготовлении бумаги, картона. Мы выяснили, какое строение имеет целлюлоза, что такое процесс ее производства.