Вклад ученых в развитие микробиологии и иммунологии. Реферат: История развития микробиологии История развития микробиологии официальные статьи

Микробиология является довольно древней наукой, прошедшей длительный путь развития. Этот путь целесообразно разбить на 5 этапов, в зависимости от уровня и методов познания мира микробов: эвристический, морфологический, физиологический, иммунологический, молекулярно-генетический.

Эвристический этап связан с неожиданными находками и до­гадками (эврика - неожиданная находка) о существовании на Земле каких-то невидимых живых существ, вызывающих болез­ни.

Как известно, микробы существовали на нашей планете за­долго до появления животных и человека. Об этом свидетель­ствует обнаружение антигенов патогенных микробов, в частно­сти возбудителя чумы, в останках древних захоронений чело­века. О существовании микробов догадывались уже древние мыслители и ученые. Еще в III-IV вв. до нашей эры основопо­ложник медицины Гиппократ считал, что болезни человека вызываются какими-то невидимыми частицами, которые он называл неживыми миазма­ми, выделяемыми в болоти­стых и других местностях. О живой природе этих частиц начали догадываться только в III-IV вв. Поэт Веррон уж определенно писал о живой сущности миазмов.

В XIV-XV вв. итальянский врач Д. Фракасторо (1478- 1553), изучая заболевания, передающиеся от человека к человеку, считал, что они вызываются «живыми кон­тагиями». Д. Фракасторо впервые описал принципы борьбы с контагиозными бо­лезнями и стал, таким об­разом, основоположником эпидемиологии.

Однако впервые человек увидел микробов своими глазами лишь в XVII в. Это стало возможным благодаря изоб­ретению микроскопа. В XVI-XVII вв. широкое распространение в Европе (особенно в Голландии) получило шлифование стекол. Этим, в частности, занимался голландский коммерсант, торго­вец сукном Антони ван Левенгук (1632-1723), проживавший в Дерпте. Он сконструировал на основе увеличительных стекол микроскоп с высокой разрешающей способностью, увеличивав­ший предметы в 300 раз. Будучи по своей природе пытливым и любознательным, А. Левенгук начал рассматривать под мик­роскопом все, что его интересовало: налет с зубов, кровь, слюну, сперму, пищевые продукты и т.д. К его удивлению, он обнаружил живые микроскопические существа, которые разли­чались по форме и размерам. Он назвал их «анималькулюсами» («зверьки»). Свои наблюдения, зарисовки «анималькулюсов» и их описания А. Левенгук направлял в виде писем (всего 120) в Британское королевское научное общество, а затем издал в виде отдельного труда. Все зарисовки и описания А. Левенгука были настолько точны, что сохранили свое значение и до наших дней. Первым россиянином, кто увидел микробов в микроскоп, был Петр I, работавший в те времена в Голландии на корабель­ных верфях; он увез в Россию первый микроскоп.

С момента открытия А. Левенгуком микробов начался мор­фологический период в развитии микробиологии. Он продолжа­ется и до наших дней, так как наука открывает все новые и новые микробы. После открыА.Левенгука было описа но множество патогенных для человека и животных микро­бов. Однако необходимо было выяснить роль микробов в природе, их жизнедеятель­ность, биологические свойства и этиологическую роль в воз­никновении болезней челове­ка и животных. Большое зна­чение в изучении этиологии микробов сыграли работы русского эпидемиолога Д.Самойловича, его героический опыт по самозаражению чу­мой. Подобные эксперименты на себе для выявления болезнетворности микробов прове­ли затем многие ученые: М. Петтенкоффер, И.И. Меч­ников, Н.Ф. Гамалея, И.Г. Сав­ченко, Д.К. Заболотный, М.С. Балоян и многие другие. Эти ученые, рискуя своей жизнью, выполнили свой долг перед человече­ством. Таким образом родилась наука деонтология - наука о долге . И в наши дни многие ученые - авторы разработанных новых микробиологических, иммунобиологических, фармацев­тических препаратов, руководствуясь долгом, испытывают эти препараты прежде всего на себе.

Этиологическую роль микробов в возникновении болезней изучали также на модельных животных. Ф. Генле разработал, а выдающийся немецкий микробиолог Р.Кох (1843-1910) затем четко сформулировал получившую название триаду Генле-Коха , по которой можно судить об этиологической роли микроба в возникновении болезни. Эта триада сводится к необходимости:

1) обнаружения микроба только при данной болезни и ни при какой другой;

2) выделения чистой культуры микроба;

3) до­казательства в эксперименте способности чистой культуры воз­будителя вызывать специфическую болезнь.

Р.Кох внес боль­шой вклад в развитие микробиологии, разработав способ полу­чения чистых культур микроорганизмов, метод их окраски, мик­рофотосъемки, открыв возбудителей холеры (запятая Коха) и туберкулеза (палочка Коха).

Открытие все новых возбудителей болезней продолжалось на протяжении XVII-XX вв. и осуществляется и в наши дни. За это время открыто и описано более 2000 видов бактерий и грибов - возбудителей болезней человека.

В конце XIX в. было обнаружено, что болезни человека и животных могут вызывать не только бактерии, но и простей­шие: амебы, лейшмании, плазмодии малярии и др. Возникла протозоология - учение о болезнях, вызываемых простейшими. Основоположниками протозоологии были русские исследовате­ли Ф.А. Леш, открывший амебиаз, П.Ф. Боровский, открывший лейшманиоз, и французский врач Лаверан, описавший возбу­дителя малярии.

Физиологический этап. Открытие возбудителей болезней сопровождалось изучением их биологических свойств, разработкой номенклатуры и их клас­сификации. Данный этап в развитии микробиологии можно назвать физиологическим. В этот период были изучены процессы и характеристики обмена веществ у бактерий: дыхание, потреб­ность в органических и минеральных веществах, ферментатив­ная активность, размножение и рост, культивирование на ис­кусственных питательных средах и т.д.

Огромное значение для развития микробиологии в этот пе­риод имели открытия гениального французского ученого Луи Пастера (1822-1895). Он не только обосновал этиологическую роль микробов в возникновении болезней, но и открыл фер­ментативную природу брожения - анаэробиоз (т.е. дыхание в отсутствие кислорода), опроверг положение о самозарождении бактерий, обосновал процессы дезинфекции и стерилизации, а также открыл и обосновал на примере бешенства и других инфекций принципы вакцинации, т.е. предохранительных при­вивок против микробов.

С Л. Пастера начинается четвертый, иммунологический, период в развитии микробиологии. Ученый в блестящих экспериментах на животных, использовав в качестве модели холеру кур, си­бирскую язву и бешенство, разработал принципы создания спе­цифической невосприимчивости к микробам путем вакцинации ослабленными, а также убитыми микробами. Он разработал способ аттенуации, т.е. ослабление (снижение) вирулентности микробов путем многократных пассажей через организм живот­ных, а также путем выращивания их на искусственных пита­тельных средах в неблагоприятных условиях. Введение живот­ным штаммов с пониженной вирулентностью обеспечивало впоследствии защиту от заболеваний, вызываемых вирулентны­ми микробами. Эффективность вакцинации аттенуированными штаммами микробов была блестяще подтверждена Л.Пастером при спасении людей, зараженных вирусом бешенства.

До Л. Пастера была известна возможность предохранительных прививок против натуральной оспы людей путем нанесения на кожу содержимого пустул (оспин), взятых от коров, больных коровьей оспой. Это впервые более 200 лет назад осуществил английский врач Э. Дженнер (1749-1823). Человечество с бла­годарностью отмечает это событие. Так, 1996 г., когда испол­нилось 200 лет со дня оспопрививания, во всем мире был объявлен годом Дженнера. Однако вакцинации против оспы человека материалом, содержащим возбудителя оспы коров, носили чисто эмпирический характер и не привели к разработке общих научных принципов вакцинопрофилактики. Это было сделано Л.Пастером, который с большим уважением относился к Э.Дженнеру и в его честь предложил называть препараты, использующиеся для прививок, вакцинами (от фр. vaca - ко­рова).

Л. Пастер разработал не только принцип вакцинации, но и способ приготовления вакцин, который не потерял своей ак­туальности и в наши дни. Следовательно, Л. Пастер яв­ляется основоположником не только микробиологии и им­мунологии, но и иммунобиотехнологии.

Развитие иммунологии в конце XIX-начале XX вв. связано с именами двух вы­дающихся ученых - русско­го зоолога И.И. Мечникова (1845-1916) и немецкого хи­мика П. Эрлиха (1854-1915). Оба этих ученых, а также Л. Пастер являются основопо­ложниками иммунологии. И.И. Мечников, окончивший Харьковский университет и ставший профессором в 26 лет, более 28 лет работал рядом с Л. Пастером, являясь заместителем по науке Парижс­кого пастеровского института, возглавляемого самим Л. Пасте­ром.

Этот институт был создан в 1888 г. на пожертвования как простых людей, так и правительств различных стран. Самое щедрое пожертвование сделал российский император Александр III. Па­стеровский институт и в наши дни является одним из ведущих институтов мира. Не случайно именно в этом институте в 1983 г. Л. Монтанье открыл вирус иммунодефицита человека.

И.И. Мечников (1845-1916) разработал фагоцитарную теорию иммуните­та, т.е. заложил основы клеточной иммунологии, за что ему была присуждена Нобелевская премия. Одновременно эта же премия была присуждена и П. Эрлиху за разработку гумораль­ной теории иммунитета, объяснявшей механизмы защиты с помощью антител. Подтверждением гуморальной теории П. Эр­лиха послужили работы Э.Беринга и С.Китазато, впервые приготовивших антитоксические дифтерийные сыворотки путем иммунизации лошадей дифтерийным токсином.

Наряду с разработкой вакцин и сывороток развивалось на­правление поиска химических противобактериальных препара­тов, оказывающих бактериостатическое и бактерицидное дей­ствие. Основоположником этого направления был П. Эрлих, искавший «волшебную пулю» против микробов. Им впервые был создан препарат «Сальварсан» (препарат 606), губительно дей­ствующий на спирохеты - возбудителя сифилиса. Это направление химиотерапии и химиопрофилактики интенсивно разви­вается и в настоящее время, имеет множество достижений, венцом которых является создание антибиотиков, открытых английс­ким врачом А. Флемингом.

Иммунологический период развития микробиологии заложил прочную основу для выделения в качестве самостоятельной дис­циплины иммунологии, а также обогатил микробиологию но­выми иммунологическими методами исследования, что позво­лило поднять микробиологию на более высокий научный и прак­тический уровень. Этому способствовали также успехи в области биохимии, молекулярной биологии, генетики, а впоследствии генной инженерии и биотехнологии.

Начиная с 40-50-х годов XX в. микробиология и иммунология вступили в молекулярно-генетический этап развития. Этот этап характеризуется расцве­том молекулярной биологии, открывшей универсальность гене­тического кода человека, животных, растений и бактерий; мо­лекулярные механизмы биологических процессов. Были расшиф­рованы химические структуры жизненно важных биологически активных веществ, таких как гормоны, ферменты и др.; осу­ществлен химический синтез биологически активных веществ. Расшифрованы, клонированы и синтезированы отдельные гены, созданы рекомбинантные ДНК; в практику внедряются генно-инженерные способы получения сложных биологически актив­ных веществ и т.д.

История развития науки «Микробиология»

«История развития микробиологии»

Микробиология (от греч. mikros -- малый, bios -- жизнь, logos -- учение) -- наука о малой жизни, объектом изучения которой являются микроорганизмы. Особенность их -- простота и очень малый размер.

Микробиологию можно подразделить на общую и частную. Общая микробиология изучает строение, физиологию, биохимию, генетику, экологию и эволюцию микробов. Частная микробиология по объектам изучения делится на медицинскую, ветеринарную, сельскохозяйственную, морскую, космическую, техническую.

Основной задачей медицинской микробиологии является изучение патогенных для человека микробов, механизмов инфекции, методов лабораторной диагностики, специфической терапии и профилактики инфекционных заболеваний человека.

Исторический путь развития древнейшей науки микробиологии можно разбить на 5 этапов, в зависимости от уровня и методов познания мира микробов: эвристический, морфологический, физиологический, иммунологический, молекулярно-генетический.

Эвристический этап связан с неожиданными находками и догадками о существовании на Земле невидимых живых существ, вызывающих болезни. Микробы существовали на нашей планете задолго до появления животных и человека, о чем догадывались уже древние мыслители и ученые. Еще в III -- IУ вв. до н.э. основоположник античной медицины Гиппократ считал, что болезни человека вызываются какими-то невидимыми частицами, которые он называл миазмами, выделяемыми в болотистых и других местностях. Ибн Сина (Авиценна) (980-1037) писал в Каноне врачебной науки) о том, что причиной чумы, оспы и других болезней являются невидимые простым глазом мельчайшие живые существа, передающиеся через воздух и воду. Основоположник морфологического периода голландский натуралист Антоний ван Левенгук (1632--1723) сконструировал микроскоп с увеличением в ЗОО раз. Рассматривая под ним капли воды, зубной налет, различные настои, он всюду находил мельчайших «зверюшек» -- amimalcula. Первые наблюдения Левенгук опубликовал ё трудах Лондонского королевского общества. В 1695 г. была издана его книга «Тайны природы, открытые Антонием Левенгуком», где были описаны микроорганизмы с точки зрения их формы, подвижности, окраски - Открытие микробов и доказательство их патогенности для человека связано с именами таких известных ученых и врачей, как д. С. Самойловпч (1744-1805), Р. Кох (1843-1910), И. И. Мечников (1845- 1916), Н.Ф.Гамалея (1859-1949) и многих других. За это время открыто и описано более 2000 видов бактерий и грибов -- возбудителей болезней человека.

В конце ХIХ века было доказано, что причиной болезней человека и животных могут быть не только бактерии, но и простейшие: амебы, лейшмании, плазмодии малярии и др. Эти открытия послужили основой для создания науки протозоологии -- учения о болезнях, вызываемых простейшими. Основоположниками протозоологии были русские исследователи Ф.А.Леш (1840-1 903), выявивший возбудителя амебиаза, П.Ф.Боровскпй (1863-1 932), изучивший лейшманиоз, и французский врач Лаверан (1845-1922), описавший возбудителя малярии.

Начало физиологического периода относится к 60-м годам ХIХ в. и связано с деятельностью выдающегося французского ученого Луп Пастера (1822--1895), который заложил основы изучения микроорганизмов с точки зрения их физиологии. Он установил биологическую природу спиртового, масляно-кислого и молочнокислого брожений. Изучил болезни вина и пива и разработал способы предохранения их от порчи.

Общебиологическое значение имеют работы Пастера по самопроизвольному зарождению жизни. На простых и убедительных примерах он показал, что в стерильных бульонах, закрытых ватными пробками во избежание контакта с воздухом, самозарождение микроорганизмов из неживой природы в условиях развитой жизни невозможно. В 1860 г. Пастер как ученый-биолог был награжден премией Парижской Академии наук. микроорганизм дезинфекция гигиенический

Занимаясь вопросами брожения и гниения, Пастер решал одновременно и практические задачи. Им предложен метод пастеризации. Большое значение для развития микробиологии в этот период имели исследования немецкого ученого Роберта Коха (1813--1910). Он предложил методику получения чистых культур на питательных средах, стал применять в практике изучения микроорганизмов анилиновые красители.

Кох открыл возбудителей холеры и туберкулеза. Возбудитель туберкулеза был назван палочкой Коха. Из него Кох получил препарат туберкулин, который хотел использовать для лечения больных туберкулезом. Однако на практике он себя не оправдал, зато оказался хорошим диагностическим средством и помог в создании ценных противотуберкулезных препаратов. Кох и его ученики открыли также возбудителей дифтерии, столбняка, брюшного тифа, гонореи.

Развитие микробиологии тесно связано также с работами русских и советских ученых. Основоположником общей микробиологии в России следует назвать Льва Семеновича Ценковского (1822--1887), опубликовавшего свою работу до низших водорослях и инфузориях», в которой установил близость бактерий и сине-зеленых водорослей. Он также создал вакцину против сибирской язвы, до настоящего времени успешно применяемую в ветеринарной практике.

Илья Ильич Мечников (1845--1916) занимался вопросами медицинской микробиологии. Изучал взаимоотношения бактерии и «хозяина» и установил, что воспалительный процесс -- реакция организма на внедрившиеся микробы; разработал фагоцитарную теорию иммунитета. Мечников сформулировал общую теорию воспаления как защитную реакцию организма и создал новое направление в иммунологии -- учение об антигенной специфичности. В настоящее время оно приобретает все большее значение в связи с разработкой проблемы пересадки органов и тканей, изучения иммунологии рака.

Развитие микробиологии тесно связано с именем крупнейшего ученого, друга и соратника И. И. Мечникова Н. Ф. Гамалеп (1859-- 1949).Всю жизнь он посвятил изучению инфекционных болезней и разработке мер борьбы с их возбудителями. Он открыл возбудителя холероподобного заболевания птиц, разработал вакцину против холеры человека и оригинальный метод получения оспенной вакцины. Гамалея первый описал лизис бактерий под влиянием бактериофага.

Основоположником эпидемиологии считается д. К. Забологный (1866--1920). Он изучал чуму в Индии, Китае, Шотландии; холеру -- на Кавказе, Украине, в Петербурге. В результате им получены научные доказательства о роли диких грызунов как хранителей возбудителя чумы в природе. Им установлены пути заноса холеры, роль бациллоносительства в распространении заболевания, изучена биология возбудителя в природе и разработаны эффективные методы диагностики холеры.

С. Н. Виноградский (1856--1953) внес большой вклад в исследование физиологии серобактерий, нитрифицирующих и железобактерий; открыл хемосинтез у бактерий -- величайшее открытие ХIХ века. Виноградским изучены азотфиксирующие бактерии и открыт новый тип питания микроорганизмов -- автотрофизм. Ученый опубликовал более ЗОО научных работ, посвященных экологии и физиологии почтенных микроорганизмов. Его по праву считают отцом почтенной микробиологии.

Большой вклад в область технической микробиологии внесли В. Н. Шапошников Я. Я. Никитинский (1878--1941).Шапошников написал первый учебник по технической микробиологии, а труды Никитинского и его учеников положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Значительные успехи в области микробиологии молока и молочных продуктов достигнуты школой С. А. Королева (1876--1932) и др.

Экологическое направление в микробиологии успешно развивалось Б. Л. Исаченко (1871--1948). Всеобщую известность приобрели его работы в области водной микробиологии. Он впервые исследовал распространение микроорганизмов в Северном Ледовитом океане и указал на их роль в экологических процессах и в круговоротах веществ в водоемах.

Ведущая роль в изучении изменчивостей микроорганизмов принадлежит работам Г. А. Надсона (1867--1940). Он впервые выделил в чистую культуру и исследовал зеленую бактерию, а также взаимоотношения между микроорганизмами (антагонизм, симбиоз). Научный интерес представляют работы ученого об участии микроорганизмов в круговоротах железа, серы и кальция. Он впервые указал на перспективы развития геологической микробиологии. Надсон допускал возможность сохранения жизнеспособности микроорганизмов в космосе, подчеркивая значение лучей короткой волны в изменении их наследственности и таким образом заложил основу космической микробиологии.

Родоначальником русской микробиологии является Л. Ценковский (1822-1887). Объектом его исследований были микроскопические простейшие, водоросли, грибы. Он открыл и описал большое число простейших, изучал их морфологию и циклы развития. Это позволило ему сделать вывод об отсутствии резкой границы между миром растений и животных. Им также была организована одна из первых Пастеровских станций в России и предложена вакцина против сибирской язвы («живая вакцина Ценковского»).

С именем И. Мечникова (1845-1916) связано развитие нового направления в микробиологии - иммунологии. Впервые в науке Мечниковым была разработана и экспериментально подтверждена биологическая теория иммунитета, вошедшая в историю как фагоцитарная теория Мечникова. В основу этой теории положено представление о клеточных защитных приспособлениях организма. Мечников в опытах на животных (дафниях, личинках морской звезды) доказал, что лейкоциты и другие клетки мезодермального происхождения обладают способностью захватывать и переваривать чужеродные частицы (в т.ч. и микробов), попадающие в организм. Это явление, названное фагоцитозом, легло в основу фагоцитарной теории иммунитета и получило всеобщее признание. Развивая далее поднятые вопросы, Мечников сформулировал общую теорию воспаления как защитную реакцию организма и создал новое направление в иммунологии - учение об антигенной специфичности. В настоящее время оно приобретает все большее значение в связи с разработкой проблемы пересадки органов и тканей, изучения иммунологии рака.

К числу важнейших работ Мечникова в области медицинской микробиологии относятся исследования патогенеза холеры и биологии холероподобных вибрионов, сифилиса, туберкулеза, возвратного тифа. Мечников является основоположником учения о микробном антагонизме, послужившем основой для развития науки об антибиотикотерапии. Идея о микробном антагонизме была использована Мечниковым при разработке проблемы долголетия. Изучая явление старения организма, Мечников пришел к заключению. Что важнейшей причиной его является хроническое отравление организма продуктами гниения, вырабатываемыми в толстом кишечнике гнилостными бактериями.

Практический интерес представляют ранние работы Мечникова по использованию гриба Isaria destructor для борьбы с вредителем полей - хлебным жуком. Они дают основание считать Мечникова основоположником биологического метода борьбы с вредителями сельскохозяйственных растений, метода, который в наши дни находит все более широкое применение и популярность. Таким образом, И.И. Мечников - выдающийся русский биолог, сочетавший качества экспериментатора, педагога и пропагандиста научных знаний, - был человеком великого духа и труда, высшей наградой которого явилось присвоение ему в 1909 г. Нобелевской премии за исследования по фагоцитозу. Развитие микробиологии в нашей стране тесно связано также с именем крупнейшего ученого, друга и соратника И. Мечникова, Н.Ф. Гамалеи (1859-1949). Всю свою жизнь Гамалея посвятил изучению инфекционных болезней и разработке мер борьбы с их возбудителями. Гамалея внес крупнейший вклад в изучение туберкулеза, холеры, бешенства, в 1886 г. вместе с И. Мечниковым организовал в Одессе первую пастеровскую станцию и ввел в практику прививки против бешенства. Он открыл птичий вибрион - возбудителя холероподобного заболевания птиц - и в честь Ильи Ильича назвал его вибрионом Мечникова. Затем была получена вакцина против холеры человека.


Большое внимание Гамалея уделял и вопросам эпидемиологии инфекционных болезней. Он был крупнейшим специалистом в области иммунологии. Разработав оригинальный метод получения оспенной вакцины, он впервые высказал идею о выделении из бактерий наиболее полноценных антигенов и об использовании их для приготовления так называемых химических вакцин. Гамалея первый наблюдал и описал явление спонтанного лизиса бактерий под влиянием неизвестного в то время агента - бактериофага. Поэтому Гамалея считается не только одним из основоположников медицинской микробиологии, но и иммунологии и вирусологии.

С.Н.Виноградского, В.Л. Омелянского, Б.Л. Исаченко, Д.И. Ивановского, Г.А. Надсона, явившихся основоположниками тех или иных направлений в общей микробиологии. Создание, например, учения об экологии почвенных микроорганизмов неразрывно связано с именем русского исследователя С. Виноградского (1856-1953). Виноградский внес большой вклад и в познание физиологического многообразия микробного мира. Им выполнены классические работы по физиологии серобактерий, железобактерий, результатом которых явилось открытие хемосинтеза у бактерий - величайшее открытие 19 в.

С. Виноградский доказал, что существуют бактерии, самостоятельно синтезирующие органическое вещество, используя при этом энергию окисления минеральных соединений (сероводород, аммиак) и углерод углекислоты, тт. е. был открыт новый тип питания микроорганизмов - автотрофизм.

Неизменным требованием Виноградского было исследование микроорганизмов в естественной среде обитания или условиях, максимально приближающихся к естественным. Следуя этому принципу, он разработал простые и оригинальные методы исследования почвенных микроорганизмов. Всеобщее признание и широкое применение получил метод элективных (избирательных) сред, позволивший выделить из естественной среды ряд новых микроорганизмов и определить их роль в круговороте веществ.

С. Виноградским опубликовано свыше 300 научных работ, посвященных экологии и физиологии почвенных микроорганизмов. Его по праву считают отцом почвенной микробиологии. К числу выдающихся основоположников отечественной микробиологии следует отнести также ученика С. Виноградского В.Л. Омалянского (1867-1928). Он был не только замечательным ученым, но и талантливым педагогом, популяризатором достижений микробиологии. В. Омелянский, подобно Пастеру, обладал глубокими знаниями в области химии, которые легли в основу его и экологического изучения микроорганизмов. Круг научных интересов В. Омелянского очень широк, однако главное направление его исследований связано с изучением круговорота веществ в природе, в котором существенную роль он отводил микроорганизмам. Изучая процессы разложения органического вещества, он впервые выделил целлюлозоразрушающие бактерии, описал их физиологию и химизм самого процесса.

Глубоко и всесторонне Омелянским были изучены микроорганизмы, участвующие в круговороте азота, особенно свободноживущие азотофиксаторы и нитрификаторы. К новой области исследований относится одна из последних работ Омелянского «Роль микроорганизмов в выветривании горных пород». Эта работа легла в основу геологической микробиологии.

Большой заслугой Омелянского является создание первого русского учебника «Основы микробиологии», вышедшего из печати в 1909 г. и выдержавшего 9 изданий. В нем Омелянский обобщил результаты микробиологических исследований и дал общие схемы круговорота в природе отдельных элементов, в том числе азота, углерода, серы и железа. В течение десятилетий этот учебник был настольной книгой специалистов.

Экологическое направление в микробиологии успешно разрабатывалось Б.Л. Исаченко (1871-1948). Всеобщую известность приобрели работы в области водной микробиологии. Он впервые исследовал распространение микроорганизмов в Северном Ледовитом океане и указал на их важную роль в геологических процессах и в круговороте веществ в водоемах.

Большой вклад в развитие отечественной и мировой микробиологии внес Д.И. Ивановский (1864-1920), открывший в 1892 г. вирусы растений и тем самым заложивши основу новой науки - вирусологии. Подчеркивая важность исследования Ивановского, английский вирусолог Н. Пири писал: «Огромное значение открытия Ивановского для теоретического естествознания заключается в том, что им была открыта новая форма существования белковых тел». Идеи Ивановского сыграли решающую роль в последующих блестящих успехах вирусологии, в результате которых были открыты возбудители большинства вирусных болезней человека, животных, растений и микроорганизмов. По заключению американского вирусолога Стенли, имя Ивановского в вирусологии следует рассматривать в том же свете, как имена Пастера и Коха в микробиологии.

10. Сферические формы (кокки) - шаровидные бактерии размером 0,5 - 1,0 мкм; по взаимнму расположению клеток различают микрококии, диплококки, стрептококки, тетракокки, сарцины и стафилококки.

Микрококки (лат. малый) - отдельно расположенные клетки или в виде "пакетов".

Диплококки (лат. двойной) - располагаются парами, так как клетки после деленияне расходятся.

Стрептококки (от греч. streptos - цепочка) - клетки округлой или продолговатой формы, составляющие цепочку вследствие деления клеток в одной плоскости и сохранения связи между ними в месте деления.

Сарцины (от лат. sarcina - связка, тюк) - располагаются в виде пакетов из 8-и и более кокков, так как они образуются при делении клетки в трех взаимно перпендикулярных плоскостях.

Стафилококки (от. греч. staphyle - виноградная гроздь) - кокки расположенные в виде грозди винограда в результате деления в различных плоскостях.

Палочковидные бактерии различаются пао размерам, форме концов клетки и взаимному расположению клеток. Длина клеток варьирует от 1,0 до 8,0 , толщина от 0,5 до 2,0 мкм. Палочки могут быть правильной (кишечная палочка) и неправильной (коринебактерии) формы, в том числе ветвящиеся, например актиномицеты. Слегка изогнутые палочки называют вибрионами (холерный вибрион). Большинство палочковидных бактерий располагаются беспорядочно, так как после деления клетки расходятся.

Элементарные тельца попадают к эпителиальную клетку путем эндоцитоза с формированием внутриклеточной вакуоли. Внутри клетки они увеличиваются и превращаются в делящиесяретикулярные тельца, образуя скопления в вакуолях (включения). Из ретикулярных телец образуются элементарные тельца, которые выходят из клеток путем экзоцитоза или лизиса клетки.

Микоплазмы - мелкие бактерии (0,15 - 1,0 мкм), окруженные цитоплазматической мембраной и не имеющие клеточной стенки. Из-за отсутствия клеточной стенки микоплазмы осмотически чувствительны. Имеют разнообразную форму: кокковидную, нитевидную, колбовидную. Эти формы видны при фазово-контрастной микроскопии чистых культур микоплазм. Патогенные микоплазмы вызывают хронические инфекции - микоплазмозы.

Актиномицеты - ветвящиеся, нитевидные или палочковидные грамположительные бактерии. Свое название (от греч. actis - луч, mykes - гриб) они получили всвязи с образованием в пораженных тканях друз - гранул из плотно переплетенных нитей в виде лучей, отходящих от центра и заканчивающихся колбовидными утолщениями. Актиномицеты могут делиться путем фрагментации мицелия на клетки, похожие на палочковидные и кокковидные бактерии. На воздушных гифах актиномицетов могут образовываться споры, служащие для размножения. Споры актиномицетов обычно нетермостойки.

Общую филогенетическую ветвь с актиномицетами образуют так называемые нокарднеподобные (нокардиоформные) актиномицеты - собирательная группа палочковидных, неправильной формы бактерий. Их отдельные представители образуют ветвящиеся формы. К ним относят бактерии родов Corynebacterium, bdycobacterium, Hocardia и др.

Нокардиоподобные актиномицеты отличаются наличием в клеточной стенке Сахаров арабинозы, галактозы, а также миколовых кислот и больших количеств жирных кислот. Миколовые кислоты и липиды клеточных стенок обусловливают кислотоустойчивость бактерий, в частности, микобактерий туберкулеза и лепры (при окраске по Цилю-Нельсену они имеют красный цвет, а некислотоустойчивые бактерии и элементы ткани, мокроты - синий цвет).

Извитые формы - спиралевидные бактерии, например спириллы, имеющие вид штопорообразно извитых клеток. К патогенным спириллам относится возбудитель содоку (болезнь укуса крыс). К извитым также относятся кампилобактеры, хеликобактеры, имеющие изгибы как у крыла летящей чайки; близки к ним и такие бактерии, как спирохеты.

Спирохеты - тонкие, длинные, извитые (спиралевидной формы) бактерии, отличающиеся от спирилл подвижностью, обусловленной сгибательными изменениями клеток. Спирохеты имеют наружную мембрану клеточной стенки, окружающую протоплазматический цилиндр с цитоплазматической мембраной. Под наружной мембраной клеточной стенки (в периплазме) расположены периплазматические фибриллы (жгутики), которые как бы закручиваясь вокруг протоплазматического цилиндра спирохеты, придают ей винтообразную форму (первичные завитки спирохет). Фибриллы прикреплены к концам клетки и направлены навстречу друг другу. Другой конец фибрилл свободен. Число и расположение фибрилл варьируют у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками.

Спирохеты плохо воспринимают красители. Их окрашивают по методу Романовского-Гимзы или серебрением, а в живом виде исследуют с помощью разово-контрастнои или темнопольнои микроскопии.

Лептоспиры (род Leptospira) имеют завитки неглубокие и частые - в виде закрученной веревки. Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобретают вид букв S или С; имеют 2 осевые нити. Патогенный представитель L. interrogates вызывает лептоспироз.

Размеры бактерий в среднем составляют 0,5-5 мкм. Escherichia coli, например, имеет размеры 0,3-1 на 1-6 мкм, Staphylococcus aureus - диаметр 0,5-1 мкм, Bacillus subtilis 0,75 на 2-3 мкм. Крупнейшей из известных бактерий является Thiomargarita namibiensis, достигающая размера в 750 мкм (0,75 мм). Второй является Epulopiscium fishelsoni имеющая диаметр 80 мкм и длину до 700 мкм и обитающая в пищеварительном тракте хирурговой рыбы Acanthurus nigrofuscus. Achromatium oxaliferum достигает размеров 33 на 100 мкм, Beggiatoa alba - 10 на 50 мкм. Спирохеты могут вырастать в длину до 250 мкм при толщине 0,7 мкм. В то же время к бактериям относятся самые мелкие из имеющих клеточное строение организмов. Mycoplasma mycoides имеет размеры 0,1-0,25 мкм, что соответствует размеру крупных вирусов, например, табачной мозаики, коровьей оспы или гриппа. По теоретическим подсчётам сферическая клетка диаметром менее 0,15-0,20 мкм становится неспособной к самостоятельному воспроизведению, поскольку в ней физически не помещаются все необходимые биополимеры и структуры в достаточном количестве.

Однако были описаны нанобактерии, имеющие размеры меньше «допустимых» и сильно отличающиеся от обычных бактерий. Они, в отличие от вирусов, способны к самостоятельному росту и размножению (чрезвычайно медленным). Они пока мало изучены, живая их природа ставится под сомнение.

При линейном увеличении радиуса клетки её поверхность возрастает пропорционально квадрату радиуса, а объём - пропорционально кубу, поэтому у мелких организмов отношение поверхности к объёму выше, чем у более крупных, что означает для первых более активный обмен веществ с окружающей средой. Метаболическая активность, измеренная по разным показателям, на единицу биомассы у мелких форм выше, чем у крупных. Поэтому небольшие даже для микроорганизмов размеры дают бактериям и археям преимущества в скорости роста и размножения по сравнению с более сложноорганизованными эукариотами и определяют их важную экологическую роль.

11. Общая схема строения бактериальной клетки показана на рисунке 2. Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения.

Клеточная стенка. Клетка бактерий одета плотной оболочкой. Этот поверхностный слой, расположенный снаружи от цитоплазматической мембраны, называют клеточной стенкой (рис. 2, 14). Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка) и представляет собой наружный скелет клетки. Эта плотная оболочка роднит бактерии с растительными клетками, что отличает их от животных клеток, имеющих мягкие оболочки. Внутри бактериальной клетки осмотическое давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка.

Толщина клеточной стенки 0,01-0,04 мкм. Она составляет от 10 до 50% сухой массы бактерий. Количество материала, из которого построена клеточная стенка, изменяется в течение роста бактерий и обычно увеличивается с возрастом.

Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин (гликопептид, мукопептид). Это органическое соединение сложного строения, в состав которого входят сахара, несущие азот,- аминосахара и 4-5 аминокислот. Причем аминокислоты клеточных стенок имеют необычную форму (D-стереоизомеры), которая в природе редко встречается.

Составные части клеточной стенки, ее компоненты, образуют сложную прочную структуру.

С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на две группы:грамположительные и грамотрицательные. Грамположительные организмы способны связывать некоторые анилиновые красители, такие, как кристаллический фиолетовый, и после обработки иодом, а затем спиртом (или ацетоном) сохранять комплекс иод-краситель. Те же бактерии, у которых под влиянием этилового спирта этот комплекс разрушается (клетки обесцвечиваются), относятся к грамотрицательным.

Химический состав клеточных стенок грамположительных и грамотрицательных бактерий различен.

У грамположительных бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты (сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок - муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено. Вероятно, все эти вещества очень плотно связаны между собой.

Стенки грамотрицательных бактерий более сложные по химическому составу, в них содержится значительное количество липидов (жиров), связанных с белками и сахарами в сложные комплексы - липопротеиды и липополисахариды. Муреина в клеточных стенках грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий. Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные (рис. 6).

Внутренний слой состоит из муреина. Над ним находится более широкий слой из неплотно упакованных молекул белка. Этот слой в свою очередь покрыт слоем липополисахарида. Самый верхний слой состоит из липопротеидов.

Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.

Капсула. Клеточная стенка многих бактерий сверху окружена слоем слизистого материала - капсулой (рис. 7). Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула.

Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.

По химическому составу капсулы чаще всего представляют собой полисахариды. Иногда они состоят изгликопротеидов (сложные комплексы сахаров и белков) и полипептидов (род Bacillus), в редких случаях - из клетчатки (род Acetobacter).

Слизистые вещества, выделяемые в субстрат некоторыми бактериями, обусловливают, например, слизисто-тягучую консистенцию испорченного молока и пива.

Цитоплазма. Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной (рис. 2, 15).

Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.

Цитоплазматическая мембрана выполняет очень важную роль - регулирует поступление веществ в клетку и выделение наружу продуктов обмена.

Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов. Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы - структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов - мостиков. Цитоплазматическая мембрана часто дает инвагинации - впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названныемезосомами. Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы (рис. 2). Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур - аналоги митохондрий. Другие выполняют функции зндоплазматической сети или аппарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки (табл. 30), которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.

В цитоплазме бактерий содержатся рибосомы- белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.

Рибосомы являются центрами синтеза белка в клетке. При этом они часто соединяются между собой, образуя агрегаты, называемые полирибосомами или полисомами.

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды. Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.

У многих бактерий гранулы состоят из крахмала или других полисахаридов - гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.

Помимо различных структурных компонентов, цитоплазма состоит из жидкой части - растворимой фракции. В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения - сахара, аминокислоты.

В результате наличияв цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным. Наибольшее осмотическое давление отмечено у грамположительных бактерий - 30 атм, у грамотрицательных бактерий оно гораздо ниже - 4-8 атм.

Ядерный аппарат. В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислот а (ДНК).

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог - «ядерный эквивалент» - нуклеоид (см. рис. 2, 8), который является эволюционно более примитивной формой организации ядерного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. В клетках эукариотов ДНК находится в определенной структуре - ядре. Ядро окружено оболочкой- мембраной.

У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - ив нуклеоиде расположена в виде пучка фибрилл.

Жгутики. На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики - органы движения бактерий.

Жгутик закрепляется под цитоплазматической мембраной с помощью двух пар дисков. У бактерий может быть один, два или много жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности и т. д. (рис. 9). Жгутики бактерий имеют диаметр 0,01-0,03 мкм, длина их может во много раз превосходить длину клетки. Бактериальные жгутики Состоят из белка - флагеллина - и представляют собой скрученные винтообразные нити.

23Ферме́нты или энзи́мы (от лат. fermentum , греч. ζύμη, ἔνζυμον - закваска) - обычно белковые молекулы или молекулы РНК(рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу). Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы - повышают, ингибиторы - понижают).Белковые ферменты синтезируются на рибосомах, а РНК - в ядре.

Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах - ими катализируется более 4000 разных биохимических реакций . Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность - константа связывания некоторых субстратов с белком может достигать 10 −10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду. Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 10 6 молекул казеиногена молока за 10 мин при температуре 37 °C. При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз. См. также Каталитически совершенный фермент

ОСНОВНЫЕ СВОЙСТВА ФЕРМЕНТОВ

Ферменты, являясь белками, обладают рядом характерных для этого класса органических соединений свойств, отличающихся от свойств неорганических катализаторов.

Термолабильность ферментов. Скорость химических реакций зависит от температуры, поэтому катализируемые ферментамиреакции также чувствительны к изменениям температуры. Установлено, что скорость большинства биохимических реакций повышается в 2 раза при повышении температуры на 10°С и, наоборот, снижается в 2 раза при понижении температуры на 10°С. Этот показатель получил название температурного коэффициента. Однако вследствие белковой природы фермента тепловая денатурация при повышении температуры будет снижать эффективную концентрацию фермента с соответствующим снижением скорости реакции. Так, при температуре, не превышающей 45–50°С, скорость реакции увеличивается согласно теории химической кинетики. При температуревыше 50°С на скорость реакции большое влияние начинает оказывать тепловая денатурация белка-фермента, приводящая к полному прекращению ферментативного процесса (рис. 4.16).

Таким образом, термолабильность, или чувствительность к повышению температуры, является одним из характерных свойствферментов, резко отличающих их от неорганических катализаторов. В присутствии последних скорость реакции возрастает экспоненциально при повышении температуры (см. кривую «а» на рис. 4.16). При температуре 100°С почти все ферменты утрачивают свою активность (исключение составляет, очевидно, только один фермент мышечной ткани – миокиназа, которая выдерживает нагревание до 100°С). Оптимальной для действия большинства ферментов теплокровных животных является температура 40°С; в этих условиях скорость реакции оказывается максимальной вследствие увеличения кинетической энергии реагирующих молекул. При низкихтемпературах (0°С и ниже) ферменты, как правило, не разрушаются, хотя активность их падает почти до нуля. Во всех случаях имеет значение время воздействия соответствующей температуры. В настоящее время для пепсина, трипсина и ряда других ферментовдоказано существование прямой зависимости

Рис. 4.17. Зависимость скорости катализируемой ферментом реакции от рН (стрелка указывает оптимум рН).

между скоростью инактивации фермента и степенью денатурации белка. Следует отметить, что на термолабильность ферментовопределенное влияние оказывает концентрация субстрата, рН среды и другие факторы. Зависимость активности ферментов от рН среды. Ферменты обычно наиболее активны в пределах узкой зоны концентрации водородных ионов, соответствующей для животныхтканей в основном выработанным в процессе эволюции физиологическим значениям рН среды 6,0–8,0. При графическом изображении на кривой колоколообразной формы имеется определенная точка, в которой фермент проявляет максимальную активность; эту точку называют оптимумом рН среды для действия данного фермента (рис. 4.17). При определении зависимости активности фермента отконцентрации водородных ионов реакцию проводят при разных значениях рН среды, обычно при оптимальной температуре и наличии достаточно высоких (насыщающих) концентраций субстрата. В табл. 4.3 приводятся оптимальные значения рН среды для рядаферментов.

Из данных табл. 4.3 видно, что рН-оптимум действия ферментов лежит в пределах физиологических значений. Исключение составляютпепсин, рН-оптимум которого 2,0 (при рН 6,0 он не активен и не стабилен). Объясняется это, во-первых, структурной организациеймолекулы фермента и, во-вторых, тем, что пепсин является компонентом желудочного сока, содержащего свободную соляную кислоту, которая создает оптимальную кислую среду для действия этого фермента. С другой стороны, рН-оптимум аргиназы лежит в сильнощелочной зоне (около 10,0); такой среды нет в клетках печени, следовательно, in vivo аргиназа функционирует, по-видимому, не в своей оптимальной зоне рН среды.

Согласно современным представлениям, влияние изменений рН среды на молекулу фермента заключается в воздействии на состояние и степень ионизации кислотных и основных групп (в частности, СООН-группы дикар-боновых аминокислот, SH-группы цистеина, имидазольного азота гисти-дина, NH 2 -группы лизина и др.). При резких сдвигах от оптимума рН среды ферменты могут подвергаться конформационным изменениям, приводящим к потере активности вследствие денатурации или изменения заряда молекулы фермента. При разных значениях рН среды активный центр может находиться в частично ионизированной или неионизированной форме, что сказывается на третичной структуре белка и соответственно на формировании активного фермент-субстратного комплекса. Имеет значение, кроме того, состояние ионизации субстратов и кофакторов.

Специфичность ферментов. Ферменты обладают высокой специфичностью действия. Это свойство часто существенно отличает их от неорганических катализаторов. Так, мелкоизмельченные платина и палладий могут катализировать восстановление (с участием молекулярного водорода) десятков тысяч химических соединений различной структуры. Высокая специфичность ферментовобусловлена, как было отмечено, конфор-мационной и электростатической комплементарностью между молекулами субстрата ифермента и уникальной структурной организацией активного центра, обеспечивающими «узнавание», высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других химических реакций, осуществляющихся одновременно в живых клетках.

В зависимости от механизма действия различают ферменты с относительной (или групповой) и абсолютной специфичностью. Так, для действия некоторых гидролитических ферментов наибольшее значение имеет тип химической связи в молекуле субстрата. Например,пепсин в одинаковой степени расщепляет белки животного и растительного происхождения, несмотря на то что эти белки существенно отличаются друг от друга как по химическому строению и аминокислотному составу, так и по физико-химическим свойствам. Однакопепсин не расщепляет ни углеводы, ни жиры. Объясняется это тем, что точкой приложения, местом действия пепсина является пептидная -СО-NH-связь. Для действия липазы, катализирующей гидролиз жиров на глицерин и жирные кислоты, подобным местом является сложноэфирная связь. Аналогичной групповой специфичностью обладают трипсин, химотрипсин, пептидазы, ферменты, гидроли-зующие α-гликозидные связи (но не β-гликозидные связи, имеющиеся в целлюлозе) в полисахаридах, и др. Обычно этиферменты участвуют в процессе пищеварения, и их групповая специфичность, вероятнее всего, имеет определенный биологический смысл. Относительной специфичностью наделены также некоторые внутриклеточные ферменты, например гексокиназа, катализирующая в присутствии АТФ фосфорилиро-вание почти всех гексоз, хотя одновременно в клетках имеются и специфические для каждой гексозы ферменты, выполняющие такое же фос-форилирование (см. главу 10).

Абсолютной специфичностью действия называют способность фермента катализировать превращение только единственногосубстрата. Любые изменения (модификации) в структуре субстрата делают его недоступным для действия фермента. Примерами такихферментов могут служить аргиназа, расщепляющая в естественных условиях (в организме) аргинин, уреаза, катализирующая распадмочевины, и др.

Имеются экспериментальные доказательства существования так называемой стереохимической специфичности, обусловленной существованием оптически изомерных L- и D-форм или геометрических (цис-и транс-) изомеров химических веществ. Так, известны оксидазы L- и D-аминокислот, хотя в природных белках обнаружены только L-ами-нокислоты. Каждый из видов оксидаз действует только на свой специфический стереоизомер.

Наглядным примером стереохимической специфичности является бактериальная аспартатдекарбоксилаза, катализирующая отщепление СО 2 только от L-аспарагиновой кислоты с превращением ее в L-аланин. Сте-реоспецифичность проявляют ферменты, катализирующие и синтетические реакции. Так, из аммиака и α-кетоглутарата во всех живых организмах синтезируется L-изомерглутаминовой кислоты, входящей в состав природных белков. Если какое-либо соединение существует в форме цис-и транс-изомеров с различным расположением групп атомов вокруг двойной связи, то, как правило, только один из этих геометрических изомеров может служить в качестве субстрата для действия фермента. Например, фумараза катализирует превращение только фумаровой кислоты(трансизомер), но не действует на малеиновую кислоту (цис-изомер):

Таким образом, благодаря высокой специфичности действия ферменты обеспечивают протекание с большой скоростью лишь определенных химических реакций из огромного разнообразия возможных превращений в микропространстве клеток и целостном организме, регулируя тем самым интенсивность обмена веществ.

Роль ферментов в обмене веществ.

Заслуга открытия микроорганизмов принадлежит голландскому натуралисту А. Левенгуку (1632-1723г.г.), создавшему первый микроскоп с увеличением в 300 раз. В 1695г. он издал книгу «Тайны природы» с рисунками кокков, палочек, спирилл. Это вызвало большой интерес среди естествоиспытателей. Состояние науки того времени позволяло только описывать новые виды (морфологический период).

Начало физиологического периода связано с деятельностью великого французского ученого Луи Пастера (1822-1895г.г.). Пастер доказал, что микробы отличаются друг от друга не только формой, но и жизнедеятельностью. Он получил микроорганизмы в чистых культурах, определил их роль в процессах брожения и доказал, что заразные болезни вызываются различными микробами. Пастером были приготовлены вакцины против сибирской язвы и бешенства. Работы Пастера о невозможности самопроизвольного зарождения микробов послужили теоретической предпосылкой для развития стерилизации и дезинфекции. Принцип, выдвинутый Пастером, был использован в промышленности, и на его основе возникло производство консервов.

Немецкий ученый Роберт Кох (1843-1910) обогатил микробиологию рядом специальных методов, обосновавших микробиологическую технику. Им были введены в лабораторную практику плотные питательные среды, что обеспечило возможность получения изолированных колоний, а, следовательно, и выделения чистых культур. Кохом был введен в практику метод окраски микробов анилиновыми красками. В 1882г. он открыл возбудителя туберкулеза, а в 1883г. – возбудителя холеры.

Основоположник отечественной микробиологии Л.С. Ценковский в своей выдающейся работе по систематике микробов указал на место бактерий в системе живых существ и на близость их к синезеленым водорослям. Ввел в практику свою сибиреязвенную вакцину, которая оказалась не менее эффективной, чем вакцина Пастера.

Иммунологический период в развитии микробиологии связан с именем российского биолога И.И. Мечникова (1845-1916), который открыл учение о невосприимчивости организма к инфекционным заболеваниям (иммунитет), явился родоначальником фагоцитарной теории иммунитета, разработал учение об антагонизме микробов, которое в дальнейшем послужило теоретической основой для получения антибиотиков. Ему принадлежат блестящие работы по экспериментальному сифилису, туберкулезу и холере. Одновременно с И.И. Мечниковым механизмы невосприимчивости к инфекционным болезням изучал крупнейший немецкий исследователь П. Эрлих, создавший теорию гуморального иммунитета.

Нашему соотечественнику С.Н. Виноградскому (1856-1953) принадлежит выдающаяся роль в создании почвенной микробиологии. С его именем связано учение о нитрификации как почвенном микробиологическом процессе, вызываемом последовательной деятельностью открытых им нитрифицирующих бактерий. Он доказал участие микробов в круговоре веществ в природе.

Русский ботаник Д.И. Ивановский (1864- 1920) впервые открыл вирусы и стал основоположником вирусологии. Работая в Никитском ботаническом саду над изучением мозаичной болезни табака, причинявшей огромный ущерб табачным плантациям, в 1892г. установил, что эта болезнь, распространенная в Крыму, вызывается вирусом.

С именем Н.Г. Габричевскго (1860-1907) связано открытие стрептококка при скарлатине и введение в практику профилактических прививок против этой болезни. Он организовал первый бактериологический институт в Москве. Ему принадлежат труды по исследованию скарлатины, дифтерии, чумы и других инфекций. Он организовал в Москве производство противодифтерийной сыворотки и успешно применил ее для лечения детей.

Выдающийся микробиолог Н.Ф. Гамалея (1859-1949) является автором большого числа классических работ и многих руководств по микробиологии. Он организовал вместе с И.И. Мечниковым в Одессе первую после парижской антирабическую станцию. Основоположник иммунологии и вирусологии, открыл бактериофагию.

Л.А. Тарасевич (1868-1927) исследовал гемолизины, которые имели большое значение в развитии учения о роли ретикулоэндотелиальной системы в иммунитете и учения об анафилаксии. Им была организована станция по контролю сывороток и вакцин (ныне Государственный контрольный институт медицинских биологических препаратов имени Л.А. Тарасевича).

Д.К. Заболотный (1866-1929) всю свою жизнь посвятил борьбе с чумой, холерой, сифилисом. Им написано более 200 научных работ по этиологии, эпидемиологии и профилактике этих заболеваний.

Г.Н. Минх (1836-1896) провел смелый эксперимент, заразив себя кровью больного возвратным тифом. Этот опыт дал ему возможность высказать свои соображения о роли насекомых в передаче тифов.

П.Ф. Здродовский – иммунолог и микробиолог, известный своими фундаментальными работами по физиологии иммунитета, а также в области изучения риккетсий и бруцелл.

В.М. Жданов – крупнейший вирусолог, один из организаторов глобальной ликвидации натуральной оспы на планете, стоявший у истоков молекулярной вирусологии и генной инженерии.

М.П. Чумаков – иммунобиотехнолог и вирусолог, организатор института полиомиелита и вирусных энцефалитов, автор пероральной вакцины против полиомиелита.

Следующим важным этапом в развитии микробиологии стало открытие антибиотиков . В 1929г. А.Флеминг открыл пенициллин и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. З.В. Ермольева – основоположник отечественной антибиотикотерапии.

В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго - внехромосомного (плазмидного) генома бактерий. Изучение плазмид показало, что они представляют собой еще более просто устроенные организмы, чем вирусы, и в отличие от бактериофагов не вредят бактериям, а наделяют их дополнительными биологическими свойствами. Открытие плазмид существенно дополнило представления о формах существования жизни и возможных путях ее эволюции.

Современный молекулярно- генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века, благодаря достижениями генетики и молекулярной биологии, созданию электронного микроскопа. В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Использование бактерий, вирусов, а затем и плазмид в качестве объектов молекулярно- биологических и генетических исследований привело к более глубокому пониманию фундаментальных процессов, лежащих в основе жизни. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно- генетические закономерности, свойственные более высоко организованным организмам.

Расшифровка генома кишечной палочки сделало возможным конструирование и пересадку генов. К настоящему времени генная инженерия создала новые направления биотехнологии.

Развитие любой клинической дисциплины происходит не изолированно, а тесным образом взаимосвязано с достижениями в других областях знаний, особенно с фундаментальными науками. Этот принцип взаимосвязи научного прогресса не только не потерял своей актуальности в настоящее время, но и даже, наоборот, становится все более и более очевидным. Важной вехой на рубеже XVI-XVII веков в подтверждении гипотезы микробной природы инфекционных болезней было открытие линз, позволивших сконструировать микроскоп, и увидеть организмы, размеры которых находятся ниже порога чувствительности «невооруженного глаза» и, тем самым, сделать вывод о реальности существования самого факта микромира. По общепризнанному мнению приоритет в открытии микромира принадлежит Antonie van Leeuwenhoek, который не только сконструировал примитивный микроскоп, но и осуществил точные зарисовки различных видов бактерий. Голландский естествоиспытатель Антоний Ван Левенгук (1632--1723) сделал в конце XVII века весьма важное открытие, обнаружив под микроскопом (который был им лично изготовлен и давал увеличение до 160 раз) различные микроорганизмы в зубном налете, в застоявшейся воде и настое из растений. Так был открыт невидимый глазу мир микробов, многие из которых могли, очевидно, явиться возбудителями болезней. Как свидетельствуют литературные источники, van Leeuwenhoek, не имевший образования, первоначально производил микроскопирование различных жидкостей больше из любопытства, в силу чего, проанализировать открытые им микроскопические объекты он не мог. Конструирование микроскопа, несомненно, оказалось революционным открытием, позволившим человечеству осуществлять поступательное движение в познании природы, однако увидеть - не значит понять. Свои наблюдения Левенгук описал в книге «Тайны природы, открытые Антонием Левенгуком». Но даже и после этого открытия идея о микробах как возбудителях инфекционных болезней долгое время не получала еще необходимого научного обоснования, хотя опустошительные эпидемии неоднократно развивались в различных странах Европы, унося тысячи человеческих жизней.

Исключительно важное практическое значение имели работы английского ученого Эдуарда Дженнера (1749--1823), разработавшего высокоэффективный метод прививок против натуральной оспы.

Выдающийся отечественный врач-эпидемиолог Д. С. Самойлович (1744--1805) доказал заразность чумы при близком соприкосновении с больным и разработал простейшие способы дезинфекции при этом заболевании. Лишь в 40-- 50-х годах XIX столетия были впервые открыты патогенные для человека микробы.

Таким образом, постепенно, на протяжении конца XVII и начала XVIII века происходило накопление все новых и новых фактов, подтверждающих роль «контагий» в развитии определенной группы заболеваний. Примечательно, что все эти суждения и обобщения на несколько десятилетий предшествовали «золотому веку бактериологии», когда за очень короткий период один за другим были открыты основные возбудители наиболее распространенных инфекционных заболеваний. Невольно даже возникает ощущение, что когда эти открытия были сделаны, они уже воспринимались как ожидаемые. Принципиально вопрос состоял только в том, кто это сделает первым

Середина XIX века характеризовалась бурным развитием микробиологии. Великий французский ученый Луи Пастер (1822-- 1895) установил участие микробов в брожении и гниении, т. е. в процессах, постоянно протекающих в природе; он доказал невозможность самопроизвольного зарождения микробов, научно обосновал и ввел в практику стерилизацию и пастеризацию. В соответствии с потребностями пивоваренной промышленности Пастер разработал способы предупреждения «болезней» пива и вина. Работы Пастера объяснили действительное происхождение инфекционных болезней человека, они явились экспериментальной основой асептики и антисептики, блестяще разработанных в хирургии Н. И. Пироговым, Листером, а также их многочисленными последователями и учениками. Огромной заслугой Пастера явилось открытие принципа получения вакцин для предохранительных прививок против инфекционных болезней: ослабление вирулентных свойств возбудителей путем особого подбора соответствующих условий для их культивирования. Пастером были получены вакцины для прививок против сибирской язвы и бешенства. Пастеру принадлежит открытие возбудителей куриной холеры, септицемии, остеомиелита и др. Он разработал метод приготовления вакцин путем искусственного ослабления (аттенуации) вирулентных микробов для профилактики инфекционных болезней -- метод, которым пользуются и в настоящее время. Им приготовлены вакцины против сибирской язвы и бешенства. Последним и наиболее известным открытием Пастера стала разработка вакцины против бешенства. 6 июля 1885 года первая антирабическая прививка была сделана 9-летнему Иосифу Мейстеру по просьбе его матери. Лечение закончилось успешно, мальчик поправился. 27 октября 1885 года Пастер сделал доклад перед Академией наук о результатах пятилетней работы над изучением бешенства. Весь мир следил за исследованиями и результатами вакцинаций. К Пастеру стали стекаться пациенты, обнадеженные победой над страшной болезнью.

Задолго до появления выдающихся исследований Пастера, осветивших роль микробов в человеческой патологии, наш соотечественник С. С. Андреевский (1786) самоотверженным опытом прививки самому себе содержимого сибиреязвенного карбункула от больного животного доказал, что сибирскую язву у людей и домашних животных вызывает одна и та же причина.

Врачи Одесской городской больницы О. О. Мочуткозский и Г. Н. Минх в 70-х годах 19 века для того, чтобы доказать, что заразное начало при сыпном и возвратном тифах находится в крови больного, впрыснули себе под кожу кровь больных и перенесли затем тяжелое заболевание.

В дальнейшем развитии микробиологии огромная заслуга принадлежит немецкому ученому Роберту Коху (1843--1910). Разработанные им методы бактериологической диагностики позволили открыть возбудителей многих инфекционных болезней. Имя Роберта Коха принято связывать главным образом с открытием возбудителя туберкулеза. Действительно, более 100 лет назад (24/III 1882 г.) ученый сообщил о своем открытии, совершившем переворот в современной ему науке. Однако к этому открытию Р. Кох подошел не сразу; оно завершило ряд основополагающих работ, открывших эру медицинской бактериологии. Р. Кох не только выделил сибиреязвенного возбудителя в чистой культуре, не только открыл его способность к образованию стойких спор, но и объяснил, почему вблизи "проклятых холмов" (такие холмы создавались в местах, где зарывали падший от сибирской язвы скот) отмечается смерть многочисленных животных, причина которой долгие годы оставалась непонятной. Доказана триада Генле -- Коха, т. е. к три положения, лишь на основании которых то или иное инфекционное заболевание можно связать с определенным возбудителем:

1) микроб должен всегда обнаруживаться у больного при данной инфекции и отсутствовать при других;

2) возбудитель каждой инфекции должен быть выделен в чистой культуре в виде хорошо очерченного морфологически микроорганизма;

3) у зараженных чистой культурой животных проявления болезни должны быть аналогичны обнаруженным у исследуемого больного, они обусловливаются числом и распределением микробов.

Эти положения неминуемо должны были привести ученого к поискам возбудителей других заразных болезней.

Прежде всего ученый нашел питательные среды, на которых можно было выделить чистую микробную колонию. Такими средами оказались предложенный им ранее вареный картофель и изобретенная им позже твердая среда, основу которой составлял желатин.

Об инфекционном происхождении чахотки медики думали до Коха. Н. И. Пирогов писал о «заразной миазме» чахотки.

Кох применил свой метод посева заразного материала на твердую среду с последующей окраской и дальнейшим заражением выделенной культурой экспериментальных животных. Он исследовал материал более 30 умерших от туберкулеза людей. Чистой культурой было заражено около 200 экспериментальных животных. Под микроскопом изучались бугорки в тканях, которые развивались в результате заражения. Кох не сомневался, что бациллы находятся у всех больных туберкулезом и у зараженных от люден животных. Но нужно было экспериментально подтвердить, что идентичный возбудитель находится у каждого больного человека и каждого подопытного животного, т. е., что прививка этого возбудителя животному обязательно вызовет тот же туберкулез. После многих неудач, когда на изготовленной им твердой питательной среде палочки не вырастали, пришел успех. Возбудитель туберкулеза вырос на твердой среде из свернувшейся при нагревании кровяной сыворотки. Эксперимент, согласно требованиям, изложенным в знаменитой триаде, был повторен многократно, и каждый раз -- с успехом. Стало ясно, что возбудитель туберкулеза найден, но Коху, считавшему, что человек заражается только через вдыхание палочек, нужно было произвести схожий эксперимент: в герметически закрытый ящик с подопытными животными нагнетали воздух с рассеянными живыми туберкулезными палочками. Все экспериментальные животные погибали от туберкулеза.

В июле 1884 г. на медицинской конференции в Берлине Кох доложил результаты экспедиции в Индию. Им были обнаружены вибрионы как у людей, заболевших холерой, так и в водах Ганга, куда сбрасывали трупы умерших от холеры. Ученый получил награду в 100 000 марок и почетный орден. инфекционный патология миазм заразный

Наконец, в 1892 г. русским ученым Д. И. Ивановским (1864--1920) были открыты вирусы.

Одновременно с развитием медицинской микробиологии совершенствовались клинические знания врачей. В 1829 г. Шарль Луи детально описал клинику брюшного тифа, выделив это заболевание из группы «лихорадок» и «горячек», в которую объединялись до этого все заболевания, протекавшие с высокой температурой. В 1856 г. из группы «горячечных болезней» был выделен сыпной тиф, в 1865 г. -- возвратный тиф. Большие заслуги в области изучения инфекционных болезней принадлежат выдающимся русским профессорам С. П. Боткину, А. А. Остроумову, Н. Ф. Филатову. С. П. Боткин установил инфекционную природу так называемой катаральной желтухи -- болезни, известной сейчас под названием болезни Боткина. Он описал клинические особенности брюшного тифа. Его ученик проф. Н. Н. Васильев (1852--1891) выделил в самостоятельную болезнь «инфекционную желтуху» (иктеро- геморрагический лептоспироз). Замечательный детский врач проф. Н. Ф. Филатов впервые изучил и описал железистую лихорадку--инфекционный мононуклеоз, болезнь, известную в настоящее время под названием болезни Филатова.

Успешно развивалась и эпидемиология. Благодаря И. И. Мечникову (1845--1916) и многим другим исследователям в конце прошлого столетия было создано стройное учение об иммунитете (невосприимчивости) при инфекционных болезнях. Открытое И. И. Мечниковым в 1882--1883 гг. явление фагоцитоза, положившее начало учению об иммунитете, открыло перспективу в профилактике и лечении инфекционных болезней. Эти открытия позволили разработать и применить в клинике серологические исследования (реакции агглютинации, преципитации и др.) для лабораторной диагностики инфекционных болезней. Большая заслуга в развитии иммунологии и теории инфекции принадлежит Н. Ф. Гамалея (1859--1949), открывшему также явления бактериофагии.

Немецкий ученый Леффлер доказал в 1897 г. принадлежность возбудителя ящура к группе фильтрующихся вирусов.

Необходимо отметить, что вплоть до середины прошлого века многие инфекционные болезни, носившие название «лихорадок» и «горячек», совершенно не дифференцировали. Лишь в 1813 г. французский врач Бретанно высказал предположение о самостоятельности заболевания брюшного тифа, а в 1829 г. Шарль Луи дал весьма детальное описание клиники этой болезни.

В 1856 г. из группы «горячечных болезней» были выделены брюшной и сыпной тифы с четкой характеристикой этих совершенно самостоятельных заболеваний. С 1865 г. стали признавать отдельной формой инфекционного заболевания и возвратный тиф. Все эти болезни получили в клинических лекциях выдающихся русских терапевтов С. П. Боткина и А. А. Остроумова исключительно полное и яркое освещение.

Правильному пониманию патогенеза, т. е. происхождения и развития инфекционных болезней, в значительной мере способствовали патологоанатомические исследования, давшие возможность обнаружить при ряде инфекционных болезней развитие характерных изменений, выражавшихся наличием специфических клеточных узелков в тканях (гранулем), например в случаях смерти от сыпного тифа "(1875), туберкулеза (1883), сапа (1886). Следует особенно подчеркнуть заслуги Л. В. Попова в первом описании инфекционной гранулемы-- периваскулярных узелков в головном мозге людей, погибших от сыпного тифа.