Реверсивная схема подключения электродвигателя. Реализация смены режимов подключения обмоток двигателя

Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

· напряжения подаваемого на статор,

· вспомогательного сопротивления цепи ротора,

· числа пар полюсов,

· частоты рабочего тока.

Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

n1 = 60f/p, где n1 - частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 - коэффициент пересчета мерности.

Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.


Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей. Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

· укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,

· применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2: 1 = р2: pt , 3-х скоростные двигатели - с двумя обмотками на статоре, из которых одна выполняется с переключением 2: 1 = Рг: Pi , 4-х скоростные двигатели - с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

3.Схема нереверсивного управления пуском трехфазного асинхронного двигателя с фазным ротором.

http://www.ngpedia.ru/pngs/016/0166rYE3L7C0J713C9B4.png\

3) три реле времени /РВ, 2PS и ЗРВ маятникового типа, механически сочлененные соответственно с контакторами К, /У и 2У;
4) кнопки «стоп» и «пуск».
В исходном положении, когда двигатель отключен, все контакторы выключены и в цепь каждой фазы ротора включено суммарное сопротивление гр\ + rp2 + грз всех трех ступеней пускового реостата. При нажатии кнопки «пуск» замыкается цепь катушки контактора К, контактор срабатывает и начинается первый этап пуска двигателя при полном сопротивлении в цепи ротора. Контактор К, срабатывая, приводит в действие механически сочлененное с ним реле времени IP В. Спустя /) секунд это реле замкнет свой контакт в цепи включающей катушки контактора /У.
Контактор 1У срабатывает, и в цепи ротора двигателя останутся включенными сопротивления гр2 + г„3 двух ступеней реостата. Этим начинается второй этап пуска двигателя. Контактор /У приведет в действие сочлененное с ним реле 2РВ, которое через 12 секунд замкнет свой контакт в цепи катушки контактора 2У. Контактор 2У сработает и выключит вторую ступень реостата. В цепи ротора останется включенным только сопротивление грз- Контактор 2У приведет в действие реле ЗРВ и спустя ta секунд замкнется цепь катушки контактора ЗУ. Последний сработает и замкнет обмотки ротора двигателя накоротко, чем и будет завершен процесс пуска двигателя.
При отключении двигателя надо нажать кнопку «стоп». При этом потеряют питание катушки контакторов К, /У, 2У и ЗУ. Контакторы отключатся и вся схема возвратится в исходное положение.
Выше были рассмотрены относительно простые схемы управления асинхронными двигателями. На практике применяются также более сложные схемы, позволяющие управлять процессом пуска, торможения, регулирования и стабилизации скорости электроприводов с двигателями постоянного и переменного тока.
Рис. 18 8. Схема управления пуском нереверсивного асинхронного двигателя с фазным ротором

4. Внутренние РУ

Распределительное устройство (РУ) - электроустановка, служащая для приёма и распределения электрической энергии одного класса напряжения.

Распределительное устройство содержит набор коммутационных аппаратов, вспомогательные устройства РЗиА и средства учёта и измерения

В различных отраслях промышленности имеется очень много различных производственных механизмов, которые выполняют ограниченное количество операций, не требующих плавного регулирования скорости вращения и способных удовлетвориться лишь ограниченным числом скоростей. К числу подобных машин относят деревообрабатывающие и металлорежущие станки, лебедки нефтяных скважин, центробежные сепараторы и другие механизмы. Ограниченное количество скоростей вращение вполне может быть обеспечено многоскоростными короткозамкнутыми асинхронными электродвигателями. При этом возможны две конструкции электродвигателей: с несколькими обмотками на статоре, уложенными в одни и те же пазы, или с одной обмоткой, допускающей переключение ее для получения различного числа пар полюсов.

Взаимодействие МДС ротора и статора возможно только при условии равного количества пар полюсов обмоток статора и ротора. Поэтому изменяя количество пар полюсов статорной обмотки необходимо не забывать изменять количество пар полюсов и на обмотке ротора. Если рассматривать асинхронную машину с фазным ротором, то для выполнения этого условия необходимо наличие дополнительных контактных колец, что сильно увеличивает габариты и стоимость электрической машины. Короткозамкнутый ротор с беличьей клеткой обладает очень ценным свойством автоматического образования числа пар полюсов, равному числу пар полюсов МДС обмотки статора. Именно это свойство и обусловило использование именно короткозамкнутых роторов в многоскоростных асинхронных электродвигателях.

Многоскоростные двигатели с несколькими независимыми обмотками на статоре по экономическим и техническим показателям уступают однообмоточным. В многообмоточных машинах плохо используется обмотка статора, нецелесообразно заполнение паза статора, значения КПД и cos φ ниже оптимальных. Поэтому в последние временя большее распространение получили многоскоростные однообмоточные электрические машины с переключением на различное число пар полюсов. Суть данного способа заключается в том, что путем переключения направления тока в части обмотки изменяют распределение магнитодвижущей силы внутри расточки статора, результатом чего становится изменение скорости вращения магнитодвижущей силы, а следовательно, и магнитного потока в пространстве. Наиболее часто осуществляют переключения в соотношении 1:2. В этом случае обмотки каждой фазы выполняются в виде двух секций. Изменение направления тока в одной из них позволяет получить изменение числа пар полюсов в 2 раза. Рассмотрим это применительно к двигателю, переключаемому на 8 и 4 полюса.

На рисунке ниже для простоты изображена обмотка одной фазы, состоящей из двух секций:

При последовательном соединении секций, то есть при соединении конца первой секции 1К с началом второй 2Н, получаем 8 полюсов или 4 пары. Если поменять направление тока во второй секции на обратное, то число полюсов, образуемое обмоткой, уменьшится в 2 раза. Изменение направления тока во второй секции может быть осуществлено путем разрыва перемычки между 1К – 2К. Количество образовавшихся при этом полюсов указано на рисунке б).

Такое же изменение числа полюсов можно получить, осуществив изменение направления тока во второй секции путем параллельного включения с первой (рисунок в)). В этом случае, точно также как и в предыдущем, обмотка образует 4 полюса, что соответствует вдвое большей скорости вращения электрической машины.

При сопоставлении схем обмоток многоскоростных электродвигателей предпочтение должно отдаваться схемам, обеспечивающим нужный характер зависимости допустимого по нагреву момента от скорости и имеющим наименьшее количество выводов и контактов.

Установим критерий, дающий возможность отнести соединение обмоток к той или иной группе. Момент, развиваемый асинхронным двигателем с короткозамкнутым ротором равен:

  • р – число пар полюсов обмотки статора;
  • N 2 – полное число стержней обмотки ротора (беличьей клетки);
  • I 2 – ток стержня ротора;
  • Ψ 2 – угол сдвига вектора тока относительно вектора ЭДС ротора;
  • Ф – магнитный поток одной пары полюсов;

По условиям нагрева ротора (в случае пренебрежения ) ток I 2 при работе с различным числом пар полюсов должен оставаться одинаковым; cos ψ 2 в пределах от холостого хода до номинального момента остается близким к единице. При таких условиях момент электрической машины будет выражен равенством:

С другой стороны, электромагнитный момент в джоулях будет равен:

Приравняв друг к другу уравнения (2) и (3) и решая относительно Р, получим Р = 314с 1 Ф.

В полученное выражение подставим значение магнитного потока из выражения ЭДС обмотки статора и ротора:

Таким образом, электромагнитная мощность электрической машины при любом числе пар полюсов обмотки статора определяется отношением фазного напряжения статора к числу витков, последовательно соединенных в фазной обмотке. Пользуясь этим признаком, проанализируем рассмотренные выше способы переключения числа пар полюсов. Для большей наглядности воспользуемся упрощенными трехфазными изображениями для случаев переключения с большего числа пар полюсов на меньшее, в нашем случае с 8 на 4. На рисунке ниже приведена схема с сохранением для обеих скоростей последовательного соединения обмоток:

Видно, что левая схема (рисунок а)), в которой обе секции обтекаются токами одного направления, соответствует большему числу пар полюсов. В правой же схеме (рисунок б)) встречное направление токов указывает на меньшее число пар полюсов. В обоих случаях число последовательно соединенных витков в обмотке одной фазы остается одно и то же, и к ним прилагается одинаковое фазное напряжение. Отношение мощностей при обоих соединениях равно единице, что означает работу с постоянной мощностью Р = const.

На рисунке ниже приведены механические характеристики двухскоростного электродвигателя, работающего при Р = const:

В данном случае для сохранения постоянства мощности при переходе на вдвое большую скорость момент должен измениться обратно пропорционально скорости.

Схема переключения полюсов с помощью перехода с последовательного соединения секций на низшей скорости на параллельное для большей, приведено на рисунке ниже:

Нетрудно заметить, что параллельное соединение секций обмотки обеспечивает изменение направления тока в одной из секций. Последнее соответствует переходу на меньшее число пар полюсов. При этом обмотка образует две параллельные звезды, включенные на линейное напряжение. Используя приведенный выше критерий (4) видим, что при переходе на высшую скорость мощность возрастает в два раза, а именно:

Это соответствует работе при М = const. Механические характеристики двухскоростного электродвигателя при М = const показана на рисунке ниже:

Сравнивая схемы в отношении необходимого числа выводов и контактов на аппарат управления (контроллер, переключатель и тому подобное) видим, что при соединении по схеме требует девяти выводов и двенадцати контактов. Схема позволяет уменьшить количество выводов до 6, а количество контактов до 8.

В рассмотренных схемах на обеих скоростях сопряжения обмоток были выполнены либо последовательной, либо параллельной . При необходимости изменить напряжение, приходящееся на обмотку одной фазы, пользуются сопряжением обмоток , двойным треугольником, а в отдельных случаях смешанным звезда – треугольник. В последнем случае три секции обмотки образуют треугольник, а три оставшиеся секции присоединяются к вершинам треугольника, образуя, таким образом, лучи звезды. Примером подобных соединений может служить схема, получившая широкое распространение в приводе металлорежущих станков и осуществляющая переход с последовательного соединения треугольником на две параллельные звезды.

При работе на низшей скорости две секции обмотки каждой фазы, соединенные последовательно, образуют стороны треугольника, к вершинам которого подводится питание. В этом случае обе секции обмотки фазы обтекаются одним током, что соответствует большему числу пар полюсов. Для получения большей скорости вершины треугольника, образованного обмотками фаз, замыкаются накоротко, а питающие провода переносятся в средние точки соединения секций обмотки каждой фазы, образуя, таким образом, две параллельные звезды. Ниже показаны схемы включения обмоток на двух скоростях:

В этой схеме при работе на низкой скорости линейное напряжение приложено к двум последовательно соединенным секциям с общим числом витков 2 w c .

При соединении двойной звездой фазное напряжение приложено к одной секции. Из соотношения (4) получим соотношение мощностей:

Таким образом, схеме переключения числа пар полюсов последовательный треугольник – двойная звезда при работе на большой скорости мощность на 15,5% больше, чем на низкой. Обычно пренебрегают этим увеличением мощности и схему относят к P = const. Электродвигатели с переключением полюсов на 3 и 4 скорости изготавливаются с двумя обмотками на статоре. Каждая из обмоток может быть выполнена с переключением полюсов по схеме треугольник – двойная звезда.

В данном случае каждая из переключаемых обмоток представляет разомкнутый треугольник. Это делается для устранения нагрева неработающей обмотки током, созданным ЭДС, индуктированной магнитным потоком. За этот счет число выводов трехскоростного двигателя равно 10 и контактов 12, для четырехскоростного 14 и 18 соответственно.

Стоит отметить, что трудоемкость изготовления обмоток многоскоростных однообмоточных электрических машин значительно ниже, чем двухобмоточных. Итак, приняв трудоемкость изготовления обмотки односкоростного электродвигателя за 100%, трудоемкость изготовления двухобмоточного четырехскоростного двигателя составит 180%, в то время как однообмоточном четырехскоростном она составляет всего 120%.

С вопросом регулировки оборотов приходится сталкиваться при работе с электроинструментом, приводом швейных машин и прочих приборов в быту и на производстве Регулировать обороты, просто понижая питающее напряжение, не имеет смысла - электродвигатель резко уменьшает обороты, теряет мощность и останавливается Оптимальным вариантом регулировки оборотов является регулирование напряжения с обратной связью по току нагрузки двигателя

В большинстве случаев в электроинструменте и других приборах применены универсальные коллекторные электродвигатели с последовательным возбуждением. Они хорошо работают как на переменном, так и на постоянном токе. Особенностью работы коллекторного электродвигателя является то, что при коммутации обмоток якоря на ламелях коллектора во время размыкания возникают импульсы противо-ЭДС самоиндукции Они равны питающим по амплитуде, но противоположны им по фазе. Угол смещения противо-ЭДС определяется внешними характеристиками электродвигателя, его нагрузкой и другими факторами. Вредное влияние противо-ЭДС выражается в искрении на коллекторе, потере мощности двигателя, дополнительном нагреве обмоток. Некоторая часть противо-ЭДС гасится конденсаторами, шунтирующими щеточный узел.

Рассмотрим процессы, протекающие в режиме регулирования с ОС, на примере универсальной схемы (рис 1). Резистивно-емкостная цепь R2-R3-C2 обеспечивает формирование опорного напряжения, определяющего скорость вращения электродвигателя.

При увеличении нагрузки скорость вращения электродвигателя падает, снижается и его крутящий момент. Противо-ЭДС, возникающая на электродвигателе и приложенная между катодом тиристора VS1 и его управляющим электродом, уменьшается. Вследствие этого напряжение на управляющем электроде тиристора возрастает пропорционально уменьшению противо-ЭДС. Дополнительное напряжение на управляющем электроде тиристора заставляет его включаться при меньшем фазовом угле (угле отсечки) и пропускать на электродвигатель больший ток, компенсируя тем самым снижение скорости вращения под нагрузкой. Существует как бы баланс импульсного напряжения на управляющем электроде тиристора, составленного из напряжения питания и напряжения самоиндукции двигателя. Переключатель SA1 позволяет при необходимости перейти на питание полным напряжением, без регулировки Особое внимание следует уделить подбору тиристора по минимальному току включения, что обеспечит лучшую стабилизацию скорости вращения электродвигателя

Вторая схема (рис 2) рассчитана на более мощные электродвигатели, применяемые в деревообрабатывающих станках, шлифмашинах, дрелях. В ней принцип регулировки остается прежним. Тиристор в данной схеме следует установить на радиатор площадью не менее 25 см2.

Для маломощных электродвигателей и при необходимости получить очень малые скорости вращения, можно с успехом применить схему на ИМС (рис 3). Она рассчитана на питание 12 В постоянного тока. В случае более высокого напряжения следует запитать микросхему через параметрический стабилизатор с напряжением стабилизации не выше 15В.

Регулировка скорости осуществляется путем изменения среднего значения напряжения импульсов, подаваемых на электродвигатель. Такие импульсы эффективно регулируют очень малые скорости вращения, как бы непрерывно "подталкивая" ротор электродвигателя. При высоких скоростях вращения электродвигатель работает обычным образом.

Весьма несложная схема (рис 4) позволит избежать аварийных ситуаций на линии железной дороги (игрушечной) и откроет новые возможности управления составами. Лампа накаливания во внешней цепи предохраняет и сигнализирует о коротком замыкании на линии, ограничивая при этом выходной ток.

Когда требуется регулировать обороты электродвигателей с большим крутящим моментом на валу, например в электролебедке, может пригодиться двухполупериодная мостовая схема (рис 5), обеспечивающая полную мощность на электродвигателе, что существенно отличает ее от предыдущих, где работала только одна полуволна питающего напряжения.

Диоды VD2 и VD6 и гасящий резистор R2 используются для питания схемы запуска. Задержка открывания тиристоров по фазе обеспечивается зарядом конденсатора С1 через резисторы R3 и R4 от источника напряжения, уровень которого определяется стабилитроном VD8 Когда конденсатор С1 зарядится до порога срабатывания однопереход-ного транзистора VT1, он открывается и запускает тот тиристор, на аноде которого присутствует положительное напряжение. Когда конденсатор разряжается, однопереходный транзистор выключается. Номинал резистора R5 зависит от типа электродвигателя и желаемой глубины обратной связи. Его величина подсчитывается по формуле

где Iм - эффективное значение максимального тока нагрузки для данного электродвигателя Предлагаемые схемы хорошо повторяемы, но требуют подбора некоторых элементов в зависимости от характеристик применяемого двигателя (практически невозможно найти подобные по всем параметрам электродвигатели даже в пределах одной серии).

Литература

1. Electronics Todays. Int N6

2. RCA Corp Manual

3. IOI Electronic Projects. 1977 p 93

5. G. E. Semiconductor Data Hand book 3. Ed

6 .Граф P. Электронные схемы. -М Мир, 1989

7. Семенов И. П. Регулятор мощности с обратной связью. - Радиолюбитель, 1997, N12, С 21.

Электродвигателя необходим для плавного разгона и торможения. Широкое применение получили такие устройства в промышленности. С их помощью изменяют скорость движения вращения вентиляторов. Двигатели на 12 Вольт используются в системах управления и автомобилях. Все видели переключатели, которыми изменяется скорость вращения вентилятора печки в машинах. Это один из типов регуляторов. Только он не предназначен для плавного запуска. Изменение скорости вращения происходит ступенчато.

Применение частотных преобразователей

В качестве регуляторов оборотов и 380В используются частотные преобразователи. Это высокотехнологичные электронные устройства, которые позволяют кардинально изменить характеристики тока (форму сигнала и частоту). В их основе находятся мощные полупроводниковые транзисторы и широтно-импульсный модулятор. Вся работа прибора управляется блоком на микроконтроллере. Изменение скорости вращения ротора двигателя происходит плавно.

Поэтому используются в нагруженных механизмах. Чем медленнее разгон, тем меньшие нагрузки будет испытывать конвейер или редуктор. Все частотники оснащены несколькими степенями защиты - по току, нагрузке, напряжению и прочими. Некоторые модели частотных преобразователей питаются от однофазного делают из него трехфазное. Это позволяет подключать асинхронные моторы дома без использования сложных схем. И не потеряется мощность при работе с таким устройством.

Для каких целей используются регуляторы

В случае с асинхронными двигателями регуляторы оборотов необходимы для:

  1. Существенной экономии электроэнергии . Ведь не в каждом механизме требуется большая скорость вращения мотора - порой ее можно уменьшить на 20-30%, а это позволит сократить расходы на электроэнергию вдвое.
  2. Защиты механизмов и электронных цепей . С помощью преобразователей частоты можно осуществлять контроль температуры, давления и многих других параметров. Если двигатель работает в качестве привода насоса, то в емкости, в которую он накачивает воздух или жидкость, нужно установить датчик давления. И при достижении максимального значения мотор просто отключится.
  3. Совершения плавного пуска . Нет необходимости использовать дополнительные электронные устройства - все можно сделать с помощью изменений настроек частотного преобразователя.
  4. Снижения расходов на техническое обслуживание . При помощи подобных регуляторов оборотов электродвигателей 220В снижается риск выхода из строя привода и отдельных механизмов.

Схема, по которой построены частотные преобразователи, широко распространена во многих бытовых приборах. Нечто подобное можно встретить в источниках бесперебойного питания, сварочных аппаратах, стабилизаторах напряжения, блоках питания компьютеров, ноутбуков, зарядниках телефонов, блоках розжига ламп подсветки современных ЖК-телевизоров и мониторов.

Как работают регуляторы вращения

Можно сделать своими руками регулятор оборотов электродвигателя, но для этого потребуется изучить все технические моменты. Конструктивно можно выделить несколько основных компонентов, а именно:

  1. Электродвигатель.
  2. Микроконтроллерную систему управления и блок преобразователя.
  3. Привод и механизмы, связанные с ним.

В самом начале работы, после подачи напряжения на обмотки, происходит вращение ротора двигателя с максимальной мощностью. Именно эта особенность отличает асинхронные машины от других. К этому прибавляется нагрузка от механизма, который приводится в движение. В итоге на начальном этапе мощность и потребляемый ток возрастают до максимума.

Выделяется очень много тепла. Перегреваются и обмотки, и провода. Применение частотного преобразователя поможет избавиться от этого. Если установить плавный пуск, то до максимальной скорости (которая также регулируется устройством и может быть не 1500 об./мин, а всего 1000) двигатель будет разгоняться не сразу, а на протяжении 10 секунд (каждую секунду по 100-150 оборотов прибавлять). При этом нагрузка на все механизмы и провода уменьшится в разы.

Самодельный регулятор

Самостоятельно можно сделать регулятор оборотов электродвигателя 12В. Для этого потребуется переключатель на несколько положений и проволочные резисторы. С помощью последних меняется напряжение питания (а вместе с ним и частота вращения). Аналогичные системы можно использовать и для асинхронных двигателей, но они менее эффективны. Много лет назад широко применялись механические регуляторы - на основе шестеренчатых приводов или вариаторов. Но они были не очень надежными. Электронные средства намного лучше себя показывают. Ведь они не такие громоздкие и позволяют более тонко настраивать привод.

Для изготовления регулятора вращения электродвигателя потребуется несколько электронных устройств, которые можно либо приобрести в магазине, либо снять со старых инверторных приборов. Неплохие результаты показывает симистор ВТ138-600 в схемах таких электронных устройств. Чтобы произвести регулировку, потребуется включить в схему переменный резистор. С его помощью изменяется амплитуда входящего на симистор сигнала.

Внедрение системы управления

Чтобы улучшить параметры даже самого простого устройства, потребуется в схему регулятора оборотов электродвигателя включить микроконтроллерное управление. Для этого нужно выбрать процессор с подходящим числом входов и выходов - для подключения датчиков, кнопок, электронных ключей. Для экспериментов можно применить микроконтроллер AtMega128 - самый популярный и простой в использовании. В свободном доступе можно найти множество схем с использованием этого контроллера. Самостоятельно их отыскать и применить на практике не составит труда. Чтобы он правильно работал, потребуется в него записать алгоритм - отклики на определенные действия. Например, при достижении температуры в 60 градусов (замер происходит на радиаторе прибора) должно произойти отключение питания.

В заключение

Если решите не делать самостоятельно устройство, а приобрести готовое, то обратите внимание на основные параметры, такие как мощность, тип системы управления, рабочее напряжение, частоты. Желательно произвести расчет характеристик механизма, в котором планируется использовать регулятор напряжения электродвигателя. И не забудьте сопоставить с параметрами частотного преобразователя.

Капитальный ремонт токарного станка в процессе. Главный двигатель – двухскоростной

В те времена, когда преобразователи частоты для асинхронных двигателей были роскошью (более 20 лет назад), в промышленном оборудовании в случае необходимости применялись двигатели постоянного тока, в которых имелась возможность регулировать частоту оборотов.

Способ этот был громоздкий, и наряду с ним использовался ещё один, попроще – применялись двускоростные (многоскоростные) двигатели, в которых обмотки подключаются и переключаются определённым образом по схеме Даландера, что позволяет изменять скорость вращения.

Двигатели постоянного тока с изменением скорости и управлением от электронного блока используются в дорогостоящем промышленном оборудовании.

А вот двухскоростные двигатели встречаются в станках производства СССР 1980-х годов средней ценовой категории. И по подключению лично у меня возникали проблемы, в связи с путаницей и недостатком информации.

Последние примеры – токарный станок спец. исполнения, лесопилка. Подробности будут ниже.

Исполнение обмоток напоминает соединение “треугольником”, в связи с этим переключение может быть ассоциировано со “звездой-треугольником”. И это сбивает с толку.

Схема “Звезда – Треугольник” используется для лёгкого пуска двигателей (при этом скорость в обоих режимах одинакова!), а двухскоростные двигатели с переключением обмоток – для переключения рабочих скоростей.

Существуют двигатели не только с двумя, но и с бОльшим количеством скоростей. Но я буду говорить о том, что лично подключал и держал в руках:

Двухскоростной асинхронный электродвигатель Даландера

Поменьше теории, побольше практики. И как обычно, от простого к сложному.

Обмотки двухскоростного двигателя выглядят таким образом:

Схема двухскоростного двигателя Даландера

При подключении выводов U1, V1, W1 такого двигателя к трехфазному напряжению он будет включен в “треугольник” на пониженную скорость.

А если выводы U1, V1, W1 замкнуть между собой, а питание подать на выводы U2, V2, W2, то получатся две “звезды” (YY), и скорость будет в 2 раза выше.

Что будет, если обмотки вершин треугольника U1, V1, W1 и середин сторон U2, V2, W2 поменять местами? Я думаю, ничего не изменится, тут дело только в названиях. Хотя, я не пробовал. Кто знает – напишите в комментариях к статье.

Схемы подключения

Кто немного не в курсе, как подключаются к трехфазной сети асинхронные электродвигатели – настоятельно рекомендую ознакомиться с моей статьёй . Я предполагаю, что читатель знает, как включается электродвигатель, зачем и какая нужна защита двигателя, поэтому в этой статье я эти вопросы опускаю.

В теории всё просто, а на практике приходится поломать голову.

Очевидно, что включение обмоток двигателя Даландера можно реализовать двумя путями – через переключатель и через контакторы.

Переключение скоростей с помощью переключателя

Рассмотрим сначала схему попроще – через переключатель типа ПКП-25-2. Тем более, что только такие принципиальные схемы мне и встречались.

Переключатель должен иметь три положения, одно из которых (среднее) соответствует выключенному двигателю. Про устройство переключателя – чуть позже.

Подключение двухскоростного двигателя. Схема на переключателе ПКП.

Крестиками на пунктирах положения переключателя SA1 отмечены замкнутые состояния контактов. То есть, в положении 1 питание от L1, L2, L3 подается на треугольник (выводы U1, V1, W1). Выводы U2, V2, W2 остаются не подключенными. Двигатель вращается на первой, пониженной скорости.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

При переключении SA1 в положение 2 выводы U1, V1, W1 замыкаются друг с другом, а питание подается на U2, V2, W2.

Переключение скоростей с помощью контакторов

При запуске с помощью контакторов схема будет выглядеть аналогично:

Схема включения двигателя на разных скоростях на контакторах

Здесь на первую скорость двигатель включает контактор КМ1, на вторую – КМ2. Очевидно, что физически КМ2 должен состоять из двух контакторов, поскольку необходимо замыкание сразу пяти силовых контактов.

Практическая реализация схемы подключения двухскоростного электродвигателя

На практике мне попадались только схемы на переключателях ПКП-25-2. Это универсальное чудо советской коммутации, у которого может быть миллион возможных сочетаний контактов. Внутри есть кулачок (их тоже несколько вариантов по форме), который можно переставлять.

Это реальная головоломка и ребус, требующий высокой концентрации сознания. Хорошо, что каждый контакт просматривается в небольшую щёлку, и можно посмотреть, когда он замкнут или разомкнут. Кроме того, через эти прорези в корпусе можно чистить контакты.

Количество положений может быть несколько, их количество ограничивается упорами, показанными на фото:

Переключатель ПКП 25. Головоломка на любителя.

Переключатель пакетный ПКП-25-2 – контакты

Практическое применение

Как я уже говорил, такие двигатели мне встречались в советских станках, которые я восстанавливал.

А именно – циркулярный деревообрабатывающий станок ЦА-2А-1, там используется двухскоростной асинхронный двигатель 4АМ100L8/4У3. Его основные параметры – первая скорость (треугольник) 700 об/мин, ток 5,0А, мощность 1,4 кВт, звёзды – 1410 об/мин, ток 5,0 А, мощность 2,4 кВт.

Меня просили сделать несколько скоростей, для разной древесины и для разной остроты циркулярной пилы. Но увы – без преобразователя частоты здесь не обойтись.

Другой старичок – токарный станок спец.исполнения УТ16П, там стоит двигатель 720/1440 об/мин, 8,9/11 А, 3,2/5,3 кВт:

Шильдик двухскоростного электродвигателя 11 кВт токарного станка

Переключение также переключателем, а схема станка выглядит так:

В этой схеме есть ошибка, как раз по теме статьи. Во первых, переключение скоростей осуществляется не реле Р2, а выключателем В2. А второе (и главное) – схема переключения абсолютно не соответствует реальности. И она меня сбила с толку, я пытался подключить по ней. Пока не сотворил вот такую схему:

Дополнительно – внешний вид и расположение элементов электросхемы.

схема токарного станка – внешний вид

схема электрическая токарного станка – расположение элементов

На этом всё.

Друзья! Кому попадаются такие станки и двигателя, пишите, делитесь опытом, задавайте вопросы, буду рад!

Обновление Март 2017

Выкладываю фото и схемы практического включения двухскоростного электродвигателя.

Двигатель работает на гидростанции. На пониженной скорости он дает малое давление, позволяющее управлять механизмами с гидравлическим приводом более точно. На повышенной скорости – давление возрастает примерно в 2 раза, и скорость перемещения соответственно.

Борно двухскоростного двигателя – на клеммы приходят 6 проводов

Контакторы двухскоростного двигателя. Левый включает в треугольник (низкая скорость), правые – двойная звезда

Мотор-автоматы. Видно, что ток треугольника – до 8А, ток звезд – до 13А

Видео работы двигателя по схеме Даландера

К сожалению, видео на русском по этой теме нет.

Схема управления для стенда, показанного выше:

Ещё схема, переключение скоростей – через Стоп:

Заточной станок на двигателе Даландера

Недавно попался станок с двухскоростным двигателем, выкладываю его схему.

Схема заточного станка на двухскоростном двигателе Даландера

Меня часто спрашивают, какую защиту сделать этому двигателю? Вот, на схеме – простое тепловое реле (РТ1), настроенное на бОльший ток (около 11 А).

Вот шильдик двигателя:

Параметры двухскоростного двигателя заточного станка

А вот – его обозначения выводов:

Как думаете, почему вместо схемы подключения показан прямоугольничек ПС (переключатель скоростей)? Правильно, схема тогда была бы в 2 раза больше и сложнее.